免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[数列] 无穷级数,比为1推收敛

本帖最后由 hbghlyj 于 2021-12-1 21:22 编辑

实数列$a_k,b_k$,若$\sum a_k$绝对收敛且$\lim\frac{a_k}{b_k}=1$则$\sum b_k$收敛.
证明
$\lim\frac{|a_k|}{|b_k|}=1$,所以∃$N\in\mathbb N$,∀$n>N,\frac12\lt\frac{|a_k|}{|b_k|}\lt2$,所以$\frac12|a_k|\lt|b_k|\lt2|a_k|$,所以∀$M\gt m\gt N,$$$\frac12\sum_{n=m}^M|a_k|\lt\sum_{n=m}^M|b_k|\lt2\sum_{n=m}^M|a_k|$$因为$\sum a_k$绝对收敛,所以$\lim_{m\to∞}\sum_{n=m}^M|a_k|=0$,所以$\lim_{m\to∞}\sum_{n=m}^M|b_k|=0$,所以$\sum b_k$绝对收敛.

若将条件$\sum a_k$绝对收敛改为$\sum a_k$收敛,并不蕴含$\sum b_k$收敛.
例如取$a_k=\frac{(-1)^k}{\sqrt k},b_k=a_k+\frac1k$.易知$\lim\frac{a_k}{b_k}=1$,且由交错级数审敛法知$\sum a_k$收敛,但$\sum b_k=\sum a_k+\sum \frac1k$发散.

返回列表 回复 发帖