免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[数列] 2021年浙江卷第10题 `S_{100}`的范围

本帖最后由 isee 于 2021-6-11 19:19 编辑

10. 已知数列$\left\{a_n \right\}$满足`a_1=1,a_{n+1}=\frac{a_n}{1+\sqrt{a_n}}\left(n\in \text{N}^*\right)`. 记数列$\left\{a_n\right\}$的前`n`项和为$S_n$,则(    )

A. `\frac 12<S_{100}<3`          B. `3<S_{100}<4`        C. `4<S_{100}<\frac 92`          D. `\frac 92<S_{100}<5`



===
功力不够,总差那么一点,再闪~
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

本帖最后由 facebooker 于 2022-4-12 13:16 编辑

回复 1# isee


   A选项左边应该是3/2吧

TOP

回复 2# facebooker


选项仅供参考,我没见到纸质或者扫描的,题源自网络

TOP

回复 2# facebooker

根据 CD 的长度推测的确应该是 5/2

TOP

本帖最后由 isee 于 2021-6-11 19:19 编辑

回复 4# kuing

暂时先用1/2吧,就当填空题

TOP

本帖最后由 realnumber 于 2021-6-13 11:30 编辑

https://mp.weixin.qq.com/s/opEy2Kfz0I0TYC6_G1_FiA
这个连接里转过来的 宁波李老师证明

可以用数学归纳法证明$n\ge 3$时,$\frac{6}{(n+1)(n+2)}\ge a_n \ge \frac{4}{(n+1)(n+2)}$
这样就有 $3\ge S_{100}\ge 2.5$
  程序算了下大约是2.773127287493

TOP

此题有更好的方法吗?

TOP

回复 7# 敬畏数学
首先可以得到\[0<a_{n+1}<a_n\leqslant\frac1n\leqslant1\]于是就有\[\sqrt{a_n}\leqslant1<\frac{12^2+1}{12^2}\Longrightarrow 12^2<\frac{17^2}{1+\sqrt{a_n}}\Longrightarrow12\sqrt{a_n}<\frac{17\sqrt{a_n}}{\sqrt{1+\sqrt{a_n}}}=17\sqrt{a_{n+1}}\]即\[\sqrt{a_n}<\frac{17}{29}(\sqrt{a_n}+\sqrt{a_{n+1}})\]这样就可以改造递推公式裂项\[a_{n+1}=\frac{a_n-a_{n+1}}{\sqrt{a_n}}>\frac{29(a_n-a_{n+1})}{17(\sqrt{a_n}+\sqrt{a_{n+1}})}=\frac{29(\sqrt{a_n}-\sqrt{a_{n+1}})}{17}\]从而\[S_n=1+\sum_{k=1}^{n-1}a_{k+1}>1+29\frac{\sqrt{a_1}-\sqrt{a_{n}}}{17}\geqslant\frac{46}{17}-\frac{29}{17\sqrt n}\]据此可以估计\[S_{100}>\frac{431}{170}>\frac52\]
1

评分人数

TOP

本帖最后由 isee 于 2022-4-12 14:50 编辑

又见 知乎提问



果然是要还的



大体方向是放缩.

首先知 $a_1=1,$ $a_n>0$ 则 $\frac {a_{n+1}}{a_n}=\frac {1}{1+\sqrt {a_n}}<\frac 11$ 即 $\color{blue}{a_n>a_{n+1}}$亦是说数列 $\{a_n\}$ 是严格单调递减的.

另一方面 $\frac 1{a_{n+1}}=\frac 1{a_n}+\frac 1{\sqrt {a_n}}<\left(\frac 1{\sqrt {a_n}}+\frac 12\right)^2$,

于是 $\frac 1{\sqrt {a_{n+1}}}<\frac 1{\sqrt {a_n}}+\frac 12$ 从而有
\begin{align*}  \end{align*}$ $\begin{align*} \frac 1{\sqrt {a_{n}}}-\frac 1{\sqrt {a_{n-1}}}&<\frac 12\\[1em] \frac 1{\sqrt {a_{n-1}}}-\frac 1{\sqrt {a_{n-2}}}&<\frac 12\\[1em] \cdots \cdots&\cdots\\[1em] \frac 1{\sqrt {a_{3}}}-\frac 1{\sqrt {a_{2}}}&<\frac 12\\[1em] \frac 1{\sqrt {a_{2}}}-\frac 1{\sqrt {a_{1}}}&<\frac 12 \end{align*}

这 $n-1$ 个式子累加,得 $\color{blue}{\frac 1{\sqrt {a_{n}}}<\frac 1{\sqrt {a_{1}}}+\frac {n-1}2=\frac {n+1}2}.$

所以 $a_{n+1}=\frac {a_n}{1+\sqrt {a_n}}<\frac {a_n}{1+\frac 2{n+1}}$ 即 $\color{blue}{\frac {a_{n+1}}{a_n}<\frac {n+1}{n+3}}$ 从而有

\begin{align*} \color{blue}{a_n}&=\frac {a_{n}}{a_{n-1}}\cdot \frac {a_{n-1}}{a_{n-2}}\cdot \frac {a_{n-2}}{a_{n-3}}\cdots\frac {a_2}{a_1}\cdot a_1 \\[1em] &<\frac {n}{n+2}\cdot \frac {n-1}{n+1}\cdot \frac {n-2}{n}\cdots \frac 24\cdot 1\\[1em] &=\frac {3\cdot 2}{(n+1)(n+2)}\\[1em] &=\color{blue}{6\left(\frac 1{n+1}-\frac 1{n+2}\right)}. \end{align*}

进一步,知

$S_{100}=6\left(\frac 12-\frac 1{102}\right)<3,$ 可知选 A.



以上解法繁琐但有启发性,下面推测

$$\color{red}{\frac {4}{(n+1)(n+2)}<a_n\leqslant \frac {6}{(n+1)(n+2)}}.$$

注意到函数 $f(x)=\frac x{1+\sqrt x},$ $f'(x)=\frac {1+\sqrt x-x\cdot \frac 1{2\sqrt x}}{(1+\sqrt x)^2}>0$ 即 $f(x)$ 单调递增.

用数学归纳法看看左边不等式,有

当 $n=1$ 时 $a_1=1>\frac 23=\frac 4{(1+1)(1+2)}$ 成立.

假设 $a_k> \frac {4}{(k+1)(k+2)}$ 成立,

则需证
\begin{align*} a_{k+1}=\frac {a_k}{1+\sqrt {a_k}}&>\frac {\frac {4}{(k+1)(k+2)}}{1+\sqrt {\frac {4}{(k+1)(k+2)}}}\\[1em] &> \frac {4}{(k+2)(k+3)}\\[1em] \Leftarrow 1+\frac 2{\sqrt{(k+1)(k+2)}}&<1+\frac {2}{k+1}\\[1em] \iff \sqrt{(k+1)(k+2)}&>k+1, \end{align*}

这显然成立.

于是
\begin{align*} S_{100}&=a_1+a_2+a_3+\cdots+a_{100}\\[1em] &>\color{red}{1+\frac 12}+4\left(\frac 14-\frac 1{102}\right)\\[1em] &>\frac 52. \end{align*}

(细心的怕是已经发现算 $S_{100}<3$ 时,$\frac {6}{(n+1)(n+2)}$ 当 $n=1,2$ 时其值正好是 $a_1,{~}a_2,$ 即也是保留前两项放缩)

综上知 $\color{blue}{\frac 52<S_{100}<3}.$

TOP

本帖最后由 xcx 于 2022-4-23 00:19 编辑

事实上我们有渐进估计 $a_n \sim \frac{4}{n^2}$
稍微归纳发现可以分子控制在 $(2^2,{2.1}^2)$ 内,然后就无了
估计阶在浙江高考越来越常见了。。。

TOP

回复 10# xcx
渐近估计怎么实施?请问

TOP

本帖最后由 AzraeL 于 2022-4-23 20:57 编辑

回复 11# 力工

记$b_n=\sqrt{a_n}$,那么
\[\dfrac1{b_{n+1}}=\dfrac{\sqrt{1+b_n}}{b_n}=\dfrac{1+\dfrac{b_n}2-\dfrac{b_n^2}8+o(b_n^2)}{b_n}=\dfrac1{b_n}+\dfrac12-\dfrac{b_n}8+o(b_n)(b_n\to0).\]
于是就有\[
b_n=\dfrac2n+o(\dfrac1n)(n\to\infty).\]
进而有\[
\dfrac1{b_n}=\dfrac1{b_1}+\dfrac{n-1}2-\dfrac{\sum\limits_{k=1}^{n-1}b_k}8+\sum_{k=1}^{n-1}o(b_k)=\dfrac n2-\dfrac{\ln n}4+o(\ln n)(n\to\infty).\]
于是\[
a_n=b_n^2=[\dfrac n2-\dfrac{\ln n}4+o(\ln n)]^{-2}=\dfrac4{n^2}[1-\dfrac{\ln n}{2n}+o(\dfrac{\ln n}n)]^{-2}=\dfrac4{n^2}[1+\dfrac{\ln n}n+o(\dfrac{\ln n}n)]=\dfrac4{n^2}+\dfrac{4\ln n}{n^3}+o(\dfrac{\ln n}{n^3})(n\to\infty).\]
1

评分人数

TOP

回复 12# AzraeL

由 `\frac1{b_{n+1}}=\frac1{b_n}+\frac12-\frac{b_n}8+o(b_n)(b_n\to0)` 是怎么推出 `b_n=\frac2n+o(\frac1n)(n\to\infty)` 的呢?
1

评分人数

TOP

回复 13# kuing

$\lim_{n\to\infty}\dfrac1{nb_n}=\lim_{n\to\infty}\dfrac{\dfrac1{b_{n+1}}-\dfrac1{b_n}}{(n+1)-n}=\dfrac12\implies nb_n=2+o(1)\implies b_n=\dfrac2n+o(\dfrac1n).$
1

评分人数

TOP

回复 14# AzraeL

噢,开头是 O'Stolz 定理?

TOP

回复 15# kuing

TOP

返回列表 回复 发帖