免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[不等式] 根式不等式

求\[y=\frac{{\sqrt {1 - \frac{1}{x}}  + \sqrt {x - \frac{1}{x}} }}{x}\]的值域
答案是\[\left( { - \infty , - \sqrt 2 } \right] \cup \left[ {0,1} \right]\]
同时得到\[\frac{{2\left( {\sqrt {\frac{{2\left( {\frac{1}{2}\left( {1 + \sqrt 5 } \right) - 1} \right)}}{{1 + \sqrt 5 }}}  + \sqrt {\frac{{2\left( {\frac{1}{4}{{\left( {1 + \sqrt 5 } \right)}^2} - 1} \right)}}{{1 + \sqrt 5 }}} } \right)}}{{1 + \sqrt 5 }}=1\]

为简洁起见作倒数代换 `x\to1/x`,值域是不变的,此时
\[y=x\sqrt{1-x}+x\sqrt{\frac1x-x},\quad x\in(-\infty,-1]\cup[0,1],\]当 `x\in(-\infty,-1]` 时易知是递增的就不说了,值得说的是当 `x\in[0,1]` 时可以用柯西秒出最大值
\[y=\sqrt{x^2(1-x)}+\sqrt{(1-x^2)x}\leqslant\sqrt{(x^2+1-x^2)(1-x+x)}=1,\] 等号成立当且仅当 `x^3=(1-x^2)(1-x)`,得 `x=\bigl(\sqrt5-1\bigr)/2`。

TOP

回复 2# kuing
本想凑热闹讨论无理不等式,出题思路是柯西不等式,被看破了

TOP

回复 2# kuing
机械化作法:当x∈[1,+∞),y≥0,先有理化再配方$$\eqalign{
  & {x^4}{y^4} - 2{x^3}{y^2} - 2{x^2}{y^2} + {x^2} + 4x{y^2} - 2x + 1 = 0  \cr
  & {y^4}{\left( {{x^2} - x - 1} \right)^2} + {\left( {y - 1} \right)^2}\left( { - 1 + x} \right)\left( {3 + 5x + 4{x^2} + 2y + 6xy + 4{x^2}y + {y^2} + 3x{y^2} + 2{x^2}{y^2}} \right) + 4(x - 1)\left( {{x^2} + x + 1} \right)(y - 1) = 0 \cr} $$所以$y-1\leq0$

TOP

返回列表 回复 发帖