免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[数论] 存在性问题10

本帖最后由 hbghlyj 于 2019-8-17 11:19 编辑

是否存在n元多项式$f(x_1,\cdots,x_n)$同时满足以下两个条件
$f(x_1,\cdots,x_n)$及轮换共n个多项式都可约且两两互质
$f(x_1,\cdots,x_n)-f(x_2,\cdots,x_1)-\cdots-f(x_n,\cdots,x_{n-1})$及轮换共n个多项式都可约且互质

例如n=3时,任取3个和为0的非零常数$a_i$,多项式$f(x_1,x_2,x_3)=(a_1x_1+a_2x_2+a_3x_3)^2$即满足要求
若取2,3,-5,就是${\left( {{\text{5x - 2y - 3z}}} \right)^{\text{2}}}{\text{ - }}{\left( {{\text{2x + 3y - 5z}}} \right)^{\text{2}}}{\text{ - }}{\left( {{\text{3x - 5y + 2z}}} \right)^{\text{2}}}=  {\text{2(3x - 5y + 2z)(2x + 3y - 5z)}}$
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

返回列表 回复 发帖