免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

一类三角函数分式的封闭和

本帖最后由 青青子衿 于 2019-5-16 19:10 编辑

\[ \Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{2k+1}{2n}\pi\right)}=\frac{n}{\sqrt{p^2-q^2}}\tanh\left(n\operatorname{artanh}\frac{\sqrt{p^2-q^2}}{p}\right)} \]
\[ \Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\sin\left(\frac{2k+1}{2n}\pi\right)}=\,???} \]
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

回复 1# 青青子衿
\begin{align*}   
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\sin\left(\frac{2k+1}{n}\pi\right)}}  
&  
\Large\color{black}{=\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\cdot\dfrac{q^{2n}-\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{2n}\,}{q^{2n}+2\left(-q\right)^n\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^n\cos\left(\frac{n}{2}\pi\right)+\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{2n}\,}}\\  
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\sin\left(\frac{2k+1}{2n}\pi\right)}}  
&  
\Large\color{black}{=\,?????}\\  
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\sin\left(\frac{2k}{n}\pi\right)}}  
&  
\Large\color{black}{=\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\cdot\dfrac{q^{2n}-\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{2n}\,}{q^{2n}-2\left(-q\right)^n\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^n\cos\left(\frac{n}{2}\pi\right)+\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{2n}\,}}\\  
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\sin\left(\frac{k}{n}\pi\right)}}  
&  
\Large\color{black}{=\,?????}\\  
\end{align*}

TOP

本帖最后由 青青子衿 于 2019-5-18 15:44 编辑

回复 1# 青青子衿
\begin{align*}  
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{2k+1}{n}\pi\right)}}
&
\Large\color{black}{=\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\cdot\dfrac{\left(-q\right)^{n}-\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{n}\,}{\left(-q\right)^{n}+\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{n}\,}}\\
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{2k+1}{2n}\pi\right)}}
&
\Large\color{black}{=\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\cdot\dfrac{q^{2n}-\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{2n}\,}{q^{2n}+\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{2n}\,}}\\
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{2k}{n}\pi\right)}}
&
\Large\color{black}{=\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\cdot\dfrac{\left(-q\right)^{n}+\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{n}\,}{\left(-q\right)^{n}-\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{n}\,}}\\
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{k}{n}\pi\right)}}
&
\Large\color{black}{=\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\cdot\dfrac{q^{2n}+\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{2n}\,}{q^{2n}-\left(p-\sqrt{p^{\overset{\,}2}-q^2}\right)^{2n}\,}-\dfrac{q}{p^2-q^2}}\\
\end{align*}
...
  1. DESMOS code
  2. \sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{2k+1}{n}\pi\right)}
  3. \frac{n}{\sqrt{p^2-q^2}}\cdot\frac{\left(-q\right)^n-\left(p-\sqrt{p^2-q^2}\right)^n}{\left(-q\right)^n+\left(p-\sqrt{p^2-q^2}\right)^n}
  4. \sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{2k+1}{2n}\pi\right)}
  5. \frac{n}{\sqrt{p^2-q^2}}\cdot\frac{q^{2n}-\left(p-\sqrt{p^2-q^2}\right)^{2n}}{q^{2n}+\left(p-\sqrt{p^2-q^2}\right)^{2n}}
  6. \sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{2k}{n}\pi\right)}
  7. \frac{n}{\sqrt{p^2-q^2}}\cdot\frac{\left(-q\right)^n+\left(p-\sqrt{p^2-q^2}\right)^n}{\left(-q\right)^n-\left(p-\sqrt{p^2-q^2}\right)^n}
  8. \sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{k}{n}\pi\right)}
  9. \frac{n}{\sqrt{p^2-q^2}}\cdot\frac{q^{2n}+\left(p-\sqrt{p^2-q^2}\right)^{2n}}{q^{2n}-\left(p-\sqrt{p^2-q^2}\right)^{2n}}-\frac{q}{p^2-q^2}
复制代码
...
\begin{align*}
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{2k+1}{n}\pi\right)}}  
&  
\Large\color{black}{=\begin{cases}\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\coth\left(\dfrac{n}{2}\operatorname{artanh}\dfrac{\sqrt{p^{\overset{\,}2}-q^2}}{p}\right) & n= 1\pmod2 \\
\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\tanh\left(\dfrac{n}{2}\operatorname{artanh}\dfrac{\sqrt{p^{\overset{\,}2}-q^2}}{p}\right)& n= 0\pmod2\end{cases}}\\  
\,\\
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{2k+1}{2n}\pi\right)}}  
&  
\Large\color{black}{=\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\tanh\left(n\operatorname{artanh}\dfrac{\sqrt{p^{\overset{\,}2}-q^2}}{p}\right)}\\  
\,\\
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{2k}{n}\pi\right)}}  
&  
\Large\color{black}{=\begin{cases}\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\tanh\left(\dfrac{n}{2}\operatorname{artanh}\dfrac{\sqrt{p^{\overset{\,}2}-q^2}}{p}\right) & n= 1\pmod2 \\
\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\coth\left(\dfrac{n}{2}\operatorname{artanh}\dfrac{\sqrt{p^{\overset{\,}2}-q^2}}{p}\right)& n= 0\pmod2\end{cases}}\\  
\,\\
\Large\color{black}{\sum_{k=0}^{n-1}\frac{1}{p+q\cos\left(\frac{k}{n}\pi\right)}}  
&  
\Large\color{black}{=\dfrac{n}{\sqrt{p^{\overset{\,}2}-q^2}}\coth\left(n\operatorname{artanh}\dfrac{\sqrt{p^{\overset{\,}2}-q^2}}{p}\right)-\dfrac{q}{p^2-q^2}}
\end{align*}
https://bbs.emath.ac.cn/thread-8690-2-1.html

TOP

返回列表 回复 发帖