免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[不等式] 三道柯基不等式应用的题

本帖最后由 力工 于 2019-2-21 21:34 编辑

(1)斜三角形$ABC$中,证明:$\dfrac{cosA}{sin^2A}+\dfrac{cosB}{sin^2B}+\dfrac{cosC}{sin^2C}\geqslant 2$.
(2)已知$a,b,c>-1$,证明:$\dfrac{1+a^2}{1+a+b^2}+\dfrac{1+b^2}{1+b+c^2}+\dfrac{1+c^2}{1+c+a^2}\geqslant 2$.
(3)已知$a,b,c>0,a+b+c=3$,证明:$\dfrac{a^2}{a+3b^4}+\dfrac{b^2}{b+3c^4}+\dfrac{c^2}{c+3a^4}\geqslant \dfrac{3}{4}$.
标题栏不能用表情啊
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

第三题比较简单,而且用不着柯西,一直均值就行了:
\[\frac{a^2}{a+3b^4}=a-\frac{3ab^4}{a+3b^4}\geqslant a-\frac{3ab^4}{4\sqrt[4]{ab^{12}}}=a-\frac{3a^{3/4}b}4\geqslant a-\frac{3(3a+1)b}{16},\]
求和即得
\[\sum\frac{a^2}{a+3b^4}\geqslant3-\frac9{16}-\frac9{16}\sum ab\geqslant3-\frac9{16}-\frac9{16}\cdot3=\frac34.\]

TOP

第一题也用不着柯西啊,而且相当弱……用余弦定理及 `2S=bc\sin A` 得\[\frac{\cos A}{\sin^2A}=\frac{bc(b^2+c^2-a^2)}{8S^2},\]所以原不等式等价于\[\sum bc(b^2+c^2-a^2)\geqslant16S^2=2\sum a^2b^2-\sum a^4,\]即\[\sum a^4+\sum(b^3c+bc^3)\geqslant abc\sum a+2\sum a^2b^2,\]显然成立。

TOP

也就第二题才是专为柯西设计的,不过也是简单的:
\[LHS=\sum\frac{(1+a^2)^2}{(1+a^2)(1+a+b^2)}\geqslant\frac{(3+a^2+b^2+c^2)^2}{\sum(1+a^2)(1+a+b^2)},\]故只需证\[(3+a^2+b^2+c^2)^2\geqslant2\sum(1+a^2)(1+a+b^2),\]展开分解即\[(1+a^2)(a-1)^2+(1+b^2)(b-1)^2+(1+c^2)(c-1)^2\geqslant0.\]
之所以说简单,就因为展开时交叉项刚好全没了,分解是容易的。

TOP

返回列表 回复 发帖