免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

渐近展开组合数对数形成的求和式

本帖最后由 青青子衿 于 2019-2-13 16:57 编辑

\[ \sum\limits_{k=0}^n\ln\binom{n}{k}=\frac{n\left(n+2\right)}{2}-\frac{\left(3n+2\right)\ln\left(2\pi n\right)}{6}-\frac{1}{12}+\frac{\gamma}{6}+\frac{1}{\pi^2}\sum\limits_{k=0}^\infty\frac{\ln k}{k^2}+o\left(\frac{1}{n}\right) \]
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

本帖最后由 战巡 于 2019-2-13 10:12 编辑

回复 1# 青青子衿

首先我们有
\[\frac{1}{\pi^2}\sum_{k=1}^\infty\frac{\ln(k)}{k^2}=2\ln(A)-\frac{\gamma}{6}-\frac{\ln(2\pi)}{6}\]
$A$为格莱舍常数,这个在http://kuing.orzweb.net/viewthread.php?tid=3980已经证明过

而后
\[\frac{n(n+2)}{2}-\frac{(3n+2)\ln(2\pi n)}{6}-\frac{1}{12}+\frac{\gamma}{6}+\frac{1}{\pi^2}\sum_{k=1}^\infty\frac{\ln(k)}{k^2}\]
\[=\frac{n(n+2)}{2}-\frac{(3n+2)\ln(n)}{6}-\frac{1}{12}+2\ln(A)-\frac{(n+1)\ln(2\pi)}{2}\]

左边有
\[\sum_{k=0}^n\ln(C^k_n)=\sum_{k=0}^n\ln(\frac{n!}{k!(n-k)!})=\ln(\frac{(n!)^{n+1}}{(1!·2!·...·n!)^2})\]
\[=\ln(\frac{(n!)^{n-1}}{(1!·2!·...·(n-1)!)^2})=\ln(\frac{\Gamma(n+1)^{n-1}}{G(n+1)^2})=\ln(\frac{K(n+1)^2}{\Gamma(n+1)^{n+1}})\]
\[=2\ln(K(n+1))-(n+1)\ln(\Gamma(n+1))\]
\[=[2\ln(A)-\frac{n^2}{2}+(n(n+1)+\frac{1}{6})\ln(n)+2\ln(1+\frac{1}{720n^2}+...)]\]
\[-[(n+1)^2\ln(n+1)-(n+1)^2-\frac{n+1}{2}\ln(n+1)+\frac{n+1}{2}\ln(2\pi)+\frac{1}{12}+o(\frac{1}{n})]\]
\[=2\ln(A)-\frac{3n+2}{6}\ln(n)-\frac{1}{12}-\frac{n+1}{2}\ln(2\pi)+\frac{n^2}{2}+2n+1-\frac{(n+1)(2n+1)}{2}\ln(1+\frac{1}{n})+o(\frac{1}{n})\]
\[=2\ln(A)-\frac{3n+2}{6}\ln(n)-\frac{1}{12}-\frac{n+1}{2}\ln(2\pi)+\frac{n^2}{2}+2n+1-\frac{(n+1)(2n+1)}{2}(\frac{1}{n}-\frac{1}{2n^2}+o(\frac{1}{n^2}))+o(\frac{1}{n})\]
\[=2\ln(A)-\frac{3n+2}{6}\ln(n)-\frac{1}{12}-\frac{n+1}{2}\ln(2\pi)+\frac{n(n+2)}{2}+o(\frac{1}{n})\]

TOP

本帖最后由 青青子衿 于 2019-2-13 09:49 编辑
回复  青青子衿
首先我们有
\[\frac{1}{\pi^2}\sum_{k=1}^\infty\frac{\ln(k)}{k^2}=2\ln(A)-\frac{\gamma}{6}-\frac{\ln(2\pi)}{6}\] ...
战巡 发表于 2019-2-13 08:04

谢谢站版,可是这两个有一项不一样,不影响吗?
这个渐近展开的结果是从一篇文章上看到的的,也没有给出证明……
\begin{align*}
&\frac{n(n+2)}{2}-\frac{(3n+2)\ln(2\pi n)}{6}-\frac{1}{12}+\frac{\gamma}{6}+\frac{1}{\pi^2}\sum_{k=1}^\infty\frac{\ln(k)}{k^2}\\
=\,&\frac{n(n+2)}{2}-\frac{(3n+2)\ln(n)}{6}-\frac{(3n+2)\ln(2\pi)}{6}-\frac{1}{12}+\frac{\gamma}{6}+\frac{1}{\pi^2}\sum_{k=1}^\infty\frac{\ln(k)}{k^2}\\
=\,&\frac{n(n+2)}{2}-\frac{(3n+2)\ln(n)}{6}-\frac{(3n+3)\ln(2\pi)}{6}-\frac{1}{12}+\frac{\ln(2\pi)}{6}+\frac{\gamma}{6}+\frac{1}{\pi^2}\sum_{k=1}^\infty\frac{\ln(k)}{k^2}\\
=\,&\frac{n(n+2)}{2}-\frac{(3n+2)\ln(n)}{6}-\frac{(n+1)\ln(2\pi)}{2}-\frac{1}{12}+2\ln(A)
\end{align*}

\begin{align*}
&\sum\limits_{k=0}^n\ln\binom{n}{k}\\
=\,&\cdots\\
=\,&\cdots\\
=\,&\frac{n(n+2)}{2}-\frac{(3n+2)\ln(n)}{6}-\frac{1}{12}+2\ln(A)+o\left(\frac{1}{n}\right)
\end{align*}

TOP

回复 3# 青青子衿


哦....漏写了而已...
前面过程中有的,后面合并项逐段处理的时候漏了...

TOP

返回列表 回复 发帖