免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖
两边同时减去 `2a+2b+2c` 可知原不等式等价于
\[2\min(a-b,b-c,c-a)\leqslant\min(a-c,c-b,b-a),\]
注意到
\[\min(a_1,a_2,\ldots,a_n)=-\max(-a_1,-a_2,\ldots,-a_n),\]
所以原不等式等价于
\[2\min(a-b,b-c,c-a)+\max(a-b,b-c,c-a)\leqslant0,\]
令 `x=a-b`, `y=b-c`, `z=c-a`,则 `x+y+z=0`,上式即
\[2\min(x,y,z)+\max(x,y,z)\leqslant x+y+z,\]
这是显然的,即得证。

按照此法,还可以编出类似的 `n` 元不等式来。

TOP

回复 3# 游客

是需要观察,不过这个题的观察还是挺容易的吧,一方面轮换,二方面它们的“平均”都是 2a+2b+2c ,于是果断减掉它就好办多了。后面 min、max 的转换就需要随机应变了,我第一反应还想过讨论,后来才发现转换一下就显然了。这种题我也是第一次见,感觉还挺好玩。

TOP

原来是这样编的,有点意思

TOP

回复 10# 游客

反过来推不出吧?

TOP

返回列表 回复 发帖