免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

两个相等的定积分

证明:\[\int_0^{2\pi}(1+\sin\theta\cos\theta)^{\sigma-1}\rmd{\theta}=\int_0^{2\pi}\dfrac{\dfrac{2\sqrt{3}}{3}}{\left(\dfrac{2}{3}\cos^2t+2\sin^2t\right)^{\sigma}}\rmd{t}\]
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

本帖最后由 青青子衿 于 2019-5-22 16:01 编辑

回复 2# abababa
能否得出更一般的:
\[ I_n\left(a,b\right)\,\triangleq\,\int_0^{\frac{\pi}{2}}\frac{1}{\left(a\cos^2\theta+b\sin^2\theta\right)^n}\mathrm{d}\theta \]
\begin{align*}
I_n\left(a,b\right)\,&=\,\frac{1}{1-n}\operatorname{div}\boldsymbol{I}_{n-1}\left(a,b\right)\\
&=\,\frac{1}{1-n}\operatorname{div}\bigg(\,I_{n-1}\boldsymbol{i}+\,I_{n-1}\boldsymbol{j}\bigg)\\
&=\,\frac{1}{1-n}\left(\dfrac{\partial\,I_{n-1}}{\partial\,a}+\dfrac{\partial\,I_{n-1}}{\partial\,b}\right)
\end{align*}
\begin{align*}
I_1\left(a,b\right)&=\frac{\pi}{2\sqrt{ab}}\\
&\Downarrow\\
I_2\left(a,b\right)&=\frac{\pi}{4\sqrt{ab}}\left(\frac{1}{a}+\frac{1}{b}\right)\\
I_3\left(a,b\right)&=\frac{\pi}{16\sqrt{ab}}\left(\frac{3}{a^2}+\frac{3}{b^2}+\frac{2}{ab}\right)\\
I_4\left(a,b\right)&=\frac{\pi}{32\sqrt{ab}}\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{5}{a^2}+\frac{5}{b^2}-\frac{2}{ab}\right)\\
I_5\left(a,b\right)&=\frac{\pi}{256\sqrt{ab}}\left(\frac{35}{a^4}+\frac{35}{b^4}+\frac{20}{a^3b}+\frac{20}{ab^3}+\frac{18}{a^2b^2}\right)\\
\end{align*}

...
  1. J[n_] := J[n] = If[n <= 1, \[Pi]/(2 Sqrt[a b]), 1/(1 - n) Plus @@ Grad[J[n - 1], {a, b}]]
  2. J[5] // FullSimplify
复制代码
...
另外,是QQ群里的网友吗?

TOP

返回列表 回复 发帖