免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[不等式] 接近双等的3元不等式

$$
\eqalign{
  & {\cal 设}a,b,c{\cal 为}{\cal 正}{\cal 数}{\cal ,}\prod {(a + 1)}  = 8,{\cal 求}{\cal 证}{\cal :}  \cr
  & 3\sum {a^3 }  + 5\sum a  \geqslant 8\sum {a^2 }  \cr}
$$
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

换元后和上次这帖 http://kuing.orzweb.net/viewthread.php?tid=5276 是同一类型,故而我还是用那帖 11# 的方法来玩。

令 `a=2x-1`, `b=2y-1`, `c=2z-1`,则 `x`, `y`, `z>1/2`, `xyz=1`,代入原不等式等价于
\[6\sum x^3-17\sum x^2+15\sum x-12\geqslant0.\]

下面证明上式对 `x`, `y`, `z>0`, `xyz=1` 都成立。

由对称性不妨设 `z=\min\{x,y,z\}`,则 `xy\geqslant1`,令 `x+y=2p`, `xy=q^2`, `q\geqslant1`,由均值知 `p\geqslant q\geqslant1`,上式消 `z` 后可以整理为
\[2q^6(p-q)\cdot M+(q-1)^2\cdot N\geqslant0,\]
其中
\begin{align*}
M&=6(2p+q-3)^2+38p+2q-39,\\
N&=12q^7-10q^6-2q^5-6q^4-10q^3+q^2+12q+6,
\end{align*}
由 `p\geqslant q\geqslant1` 知 `M>0`,较难的是证明 `N>0`,事实上它的最小值很接近零,这大概也是楼主的标题所说的“接近双等”的原因吧,令 `q=1+t`, `t\geqslant0`,则 `N` 可化为
\[N=12t^7+74t^6+190t^5+\left( 254t^2+\frac{752}3t \right)\left( t-\frac16 \right)^2+\frac1{54}(5049t^2-1780t+162),\]
计算最后一个括号的判别式可知其恒为正,所以 `N>0`,故原不等式得证。
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

样子很漂亮,有点小暴力

TOP

返回列表 回复 发帖