免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

对称群\(S_3\)的乘法表

本帖最后由 青青子衿 于 2018-3-14 21:50 编辑

\[
\text{Group multiplication table for \(S_3\)}\\
\begin{array}{c|c|c|c|c|c|c}
\hline
\varphi_i\circ\varphi_j&
\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3
\end{pmatrix}&
\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}&
\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}&
\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}&
\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}&
\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}
\\
\hline

\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3
\end{pmatrix}&
\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3
\end{pmatrix}&
\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}&
\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}&
\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}&
\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}&
\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}
\\
\hline

\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2\end{pmatrix}&
\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}&
\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3\end{pmatrix}&
\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}&
\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}&
\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3\end{pmatrix}&
\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}
\\
\hline

\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3\end{pmatrix}&
\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}&
\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}&
\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3\end{pmatrix}&
\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2\end{pmatrix}&
\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}&
\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2\end{pmatrix}
\\
\hline

\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}&
\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1
\end{pmatrix}&
\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3\end{pmatrix}&
\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}&
\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2\end{pmatrix}&
\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3\end{pmatrix}&
\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2\end{pmatrix}
\\
\hline

\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2\end{pmatrix}&
\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}&
\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}&
\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2\end{pmatrix}&
\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3\end{pmatrix}&
\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}&
\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3\end{pmatrix}
\\
\hline

\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}&
\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1
\end{pmatrix}&
\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2\end{pmatrix}&
\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}&
\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3\end{pmatrix}&
\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2\end{pmatrix}&
\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3\end{pmatrix}
\\
\hline

\end{array}
\]

\[
\text{Group multiplication table for \(S_3\)}\\
\begin{array}{c|c|c|c|c|c|c}
\hline
\varphi_i\circ\varphi_j&
\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3
\end{pmatrix}&
\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}&
\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}&
\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}&
\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}&
\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}
\\
\hline

\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3
\end{pmatrix}&
{\color{red}{\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3
\end{pmatrix}}}&
{\color{orange}{\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}}}&
{\color{yellow}{\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}}}&
{\color{green}{\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}}}&
{\color{blue}{\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}}}&
{\color{purple}{\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}}}
\\
\hline

\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}&
{\color{orange}{\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}}}&
{\color{red}{\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3
\end{pmatrix}}}&
{\color{blue}{\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}}}&
{\color{purple}{\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}}}&
{\color{yellow}{\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}}}&
{\color{green}{\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}}}
\\
\hline

\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}&
{\color{yellow}{\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}}}&
{\color{green}{\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}}}&
{\color{red}{\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3
\end{pmatrix}}}&
{\color{orange}{\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}}}&
{\color{purple}{\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}}}&
{\color{blue}{\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}}}
\\
\hline

\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}&
{\color{green}{\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}}}&
{\color{yellow}{\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}}}&
{\color{purple}{\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}}}&
{\color{blue}{\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}}}&
{\color{red}{\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3
\end{pmatrix}}}&
{\color{orange}{\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}}}
\\
\hline

\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}&
{\color{blue}{\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}}}&
{\color{purple}{\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}}}&
{\color{orange}{\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}}}&
{\color{red}{\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3
\end{pmatrix}}}&
{\color{green}{\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}}}&
{\color{yellow}{\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}}}
\\
\hline

\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}&
{\color{purple}{\varphi_6=
\begin{pmatrix}
1&2&3\\
3&2&1\end{pmatrix}}}&
{\color{blue}{\varphi_5=
\begin{pmatrix}
1&2&3\\
3&1&2
\end{pmatrix}}}&
{\color{green}{\varphi_4=
\begin{pmatrix}
1&2&3\\
2&3&1\end{pmatrix}}}&
{\color{yellow}{\varphi_3=
\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}}}&
{\color{orange}{\varphi_2=
\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}}}&
{\color{red}{\varphi_1=
\begin{pmatrix}
1&2&3\\
1&2&3
\end{pmatrix}}}
\\
\hline

\end{array}
\]
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

回复 1# 青青子衿


    这种矩阵的表格看似简单,$\LaTeX$ 里还是比较烦人的

TOP

返回列表 回复 发帖