免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[不等式] 转发一个经典轮换不等式

本帖最后由 wanhuihua 于 2018-2-23 22:51 编辑

$$
\eqalign{
  &  {\cal 设}x,y,z{\cal 为}{\cal 正}{\cal 数}{\cal ,}x \geqslant y \geqslant z  \cr
  &  {\cal 求}{\cal 证}:  \cr
  &     \frac{{x^2 y}}
{z} + \frac{{y^2 z}}
{x} + \frac{{z^2 x}}
{y} \geqslant x^2  + y^2  + z^2  \cr}
$$
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

测试Latex OK!!!!

TOP

代码建议手打,机器转的码不好

TOP

本帖最后由 走走看看 于 2018-2-23 19:41 编辑

回复 1# wanhuihua


这道题像是用排序不等式证,但不知下面的证法是否正确。

$x≥y≥z$

$x^2≥y^2≥z^2$

$\frac{x}{x}≤ \frac{y}{y} ≤ \frac{z}{z}   反序$

$\frac{x}{z}≥ \frac{y}{y} ≥ \frac{z}{x}   正序$

$\frac{y}{z}  、\frac{z}{x}、  \frac{x}{y}   乱序$

$所以\frac{ x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}≥\frac{ x^2x}{x}+\frac{y^2y}{y}+\frac{z^2z}{z}=x^2+y^2+z^2$

看了撸题集,那里不是用 排序不等式。
如果用排序不等式,以上的证明是否正确呢?

TOP

见《撸题集》第 440 页题目 4.6.18

TOP

捕获.PNG
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

本帖最后由 wanhuihua 于 2018-2-23 19:34 编辑

回复 6# kuing

改了是好看点,技术要求高!关键是我的分式字母变小不好

TOP

本帖最后由 wanhuihua 于 2018-2-23 22:42 编辑

$$
\eqalign{
  &  {\cal 设}x,y,z{\cal 为}{\cal 正}{\cal 数}{\cal ,}x \geqslant y \geqslant z  \cr
  &  {\cal 求}{\cal 证}:  \cr
  &     \frac{{x^2 y}}
{z} + \frac{{y^2 z}}
{x} + \frac{{z^2 x}}
{y} \geqslant x^2  + y^2  + z^2   \cr
  & {\cal 证}{\cal 明}{\cal :}  {\cal 记}x{\text{ = }}y + a,y = z + b  \cr
  & {\cal 上}{\cal 式} \Leftrightarrow \frac{{x^2 b}}
{z} + \frac{{z^2 a}}
{y} \geqslant \frac{{y^2 }}
{x}(a + b) \Leftrightarrow (\frac{{x^2 }}
{z} - \frac{{y^2 }}
{z} + \frac{{y^2 }}
{z} - \frac{{y^2 }}
{x})b \geqslant (\frac{{y^2  - z^2 }}
{x} + \frac{{z^2 }}
{x} - \frac{{z^2 }}
{y})a  \cr
  &  \Leftrightarrow \frac{{ab}}
{z}(x + y) + y^2 b(\frac{{a + b}}
{{xz}}) \geqslant \frac{{ab}}
{x}(y + z) - \frac{{a^2 }}
{{xy}}z^2 ,{\cal 左}{\cal 边} \geqslant {\text{2}}ab,{\cal 右}{\cal 边} \leqslant 2ab,{\cal 显}{\cal 然}{\cal 。} \cr}
$$

这个格式还可以吧

TOP

回复 8# wanhuihua

还是建议参考置顶帖来输入公式。

TOP

返回列表 回复 发帖