免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[几何] 旧问重提——平面斜截圆锥的展开图

闲逛时看到这帖提到平面斜截圆锥的展开图,多想将《撸题集》第533~534页的内容贴过去,可惜那边注册帐号要花钱,就算了。

回头想想,当年也只是写了椭圆的情况,并未讨论双曲线和抛物线的情形,闲来无事,今天就来把它扯完吧。

为方便看,还是把原文截上来先。
P533_1.png
2018-1-28 18:54

P533_2.png
2018-1-28 18:54

P534.png
2018-1-28 20:13

首先直觉告诉我,讨论剩下的两种情形肯定不需要再像上面那样重新搞一遍,事实证明的确如此。

先来看双曲线的,这时要把顶上的圆锥也考虑进来,对应于上面的图 4.7.46,这里就应该画成这样:

QQ截图20180128174913.png
2018-1-28 18:54


其他的都一样,然后同样利用梅捏劳斯定理,有
\[\frac x{2R-x}\cdot\frac{r+b}b\cdot\frac a{r-a}=1,\]
注意此式亦可写成
\[\frac x{2R-x}\cdot\frac{-b-r}{-b}\cdot\frac a{r-a}=1,\]
也就是说,只是将椭圆时的式子的 $b$ 变成 $-b$ 而已,或者干脆设 $\vv{OD}$ 为正方向,令有向线段 $\overline{OB}=b$,这样,双曲线时的方程就和椭圆时完全一样,只是 $b$ 取负数。

再看抛物线的,图是酱紫:

QQ截图20180128180154.png
2018-1-28 18:54


$AQ\px OD$,没有 $B$,此时有
\[\frac x{2R-x}=\frac{r-a}a,\]
注意此式亦可写成
\[\frac x{2R-x}\cdot\frac{\infty-r}\infty\cdot\frac a{r-a}=1,\]
也就是椭圆时的式子的 $b$ 为无穷大而已,因此,将椭圆时的方程变形为
\[r=\frac{2a}{\frac ab+1+\left( 1-\frac ab \right)\cos\frac\theta{\sin\varphi}},\]
那么抛物线时的方程自然就是
\[r=\frac{2a}{1+\cos\frac\theta{\sin\varphi}}.\]

曲线的样子如下图所示,蓝色是抛物线的情形,$b$ 为负时如无意外地出现了两支。

dbfbhdjn.gif
2018-1-28 18:53

平面斜截圆锥展开图.gsp (4.73 KB)
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
冇钱又冇样、冇型又冇款、冇身材又冇文采、冇学历又冇能力、冇高度冇速度冇力度兼夹冇野做!(粤语)
口号:珍爱生命,远离考试。

搞这么个动画真是累
平面斜截圆锥展开图.gif
2018-1-29 02:18
冇钱又冇样、冇型又冇款、冇身材又冇文采、冇学历又冇能力、冇高度冇速度冇力度兼夹冇野做!(粤语)
口号:珍爱生命,远离考试。

TOP

回复 2# kuing


    {qiang}

TOP

直接输出png格式效果会好些,来个双曲线的情形,轨迹看起来确实和几何画板里画的差不多,看来应该没什么问题了
QQ截图20180129164519.png
2018-1-29 16:46
冇钱又冇样、冇型又冇款、冇身材又冇文采、冇学历又冇能力、冇高度冇速度冇力度兼夹冇野做!(粤语)
口号:珍爱生命,远离考试。

TOP

回复 1# kuing
这个动图我。。。。想歪了

TOP

回复 5# 其妙


    你今天有空路过,奇了怪了。。。。

TOP

回复 6# isee
隔个十天半月还是会回来学习的(比如学习kk的技艺和你的知识等等)

TOP

返回列表 回复 发帖