免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[不等式] 三角函數最大值

\(0\leq a \leq b \leq c \leq \frac{\pi}{2}\),\(cos^{2}a+cos^{2}b+cos^{2}c=2\)
求\(\frac{cosa+cosb+cosc}{sina+sinb+sinc}\)最大值
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

由已知可令
\[\cos a=\sqrt {\frac {y^2+z^2}{x^2+y^2+z^2}},\cos b=\sqrt {\frac {z^2+x^2}{x^2+y^2+z^2}},\cos c=\sqrt {\frac {x^2+y^2}{x^2+y^2+z^2}},\]
其中 $x$, $y$, $z$ 非负,则
\[\sin a=\frac x{\sqrt {x^2+y^2+z^2}},\sin b=\frac y{\sqrt {x^2+y^2+z^2}},\sin c=\frac z{\sqrt {x^2+y^2+z^2}},\]

\[\text{原式}=\frac {\sqrt {y^2+z^2}+\sqrt {z^2+x^2}+\sqrt {x^2+y^2}}{x+y+z}\leqslant \frac {y+z+z+x+x+y}{x+y+z}=2,\]
当 $x=y=0$,即 $a=b=0$ 时取等,所以最大值就是 $2$。

TOP

稍微反思一下,立马可以把上述解法扔掉,换成下面的本质相同的解法。
\[\cos a=\sqrt {2-\cos ^2b-\cos ^2c}=\sqrt {\sin ^2b+\sin ^2c}\leqslant \sin b+\sin c,\]
同理有 $\cos b\leqslant\sin c+\sin a$, $\cos c\leqslant\sin a+\sin b$,三式相加即得原式 $\leqslant2$,当 $a=b=0$ 取等。
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

返回列表 回复 发帖