免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

出个题玩玩吧,概率论的

本帖最后由 战巡 于 2013-10-13 17:28 编辑

这个是我的作业题之一.........

已知参数$\phi$的概率密度函数为$f_{\phi}(\phi)$,随机向量$\theta=(\theta_1, \theta_2, ..., \theta_n)$中,$\theta_i|\phi$全部独立且服从同样分布
换言之,有$f_{\theta}(\theta_1, \theta_2, ..., \theta_n|\phi)=\prod_{i=1}^nf_{\theta_i|\phi}(\theta_i|\phi)$
而且
\[f_{\theta}(\theta_1, \theta_2, ..., \theta_n)=\int_{\phi}\prod_{i=1}^nf_{\theta_i|\phi}(\theta_i|\phi)f_{\phi}(\phi)d\phi\]
证明:对于任意$1\le i< j\le n$,都有$cov(\theta_i, \theta_j)\ge 0$

战巡!哎哟,又一个全能手来了,膜拜之

当然,楼主的题,偶肯定不会了

TOP

联合分布、协方差也来了!
妙不可言,不明其妙,不着一字,各释其妙!

TOP

别吓到啊.........尼玛这是上次作业里最简单的一题了...
另一个题还要用到这题的结论叻......

TOP

没吓倒, 因为完全看不懂 [阿鲁捂眼表情]
I am majia of kuing

TOP

回复 5# 爪机专用

楼上这ID.........
难道是某k的马甲?

TOP

签名已示
I am majia of kuing

TOP

证明1:
\begin{align*}
cov(\theta_i,\theta_j) &= E(\theta_i \theta_j) - E(\theta_i)E(\theta_j) \\
&= E\left( E(\theta_i \theta_j |\phi) \right) - \left(E(\theta_i)\right)^2 \\
&= E\left(E(\theta_i |\phi) E(\theta_j |\phi) \right) - \left(E\left (E (\theta_i |\phi)\right)\right)^2 \\
&= E\left( E(\theta_i |\phi)^2\right) - \left(E\left ( E (\theta_i |\phi)\right)\right)^2 \\
&= var\left(E (\theta_i |\phi)\right) \\
&\ge  0.
\end{align*}
证明2:
\begin{align*}
\mathrm{Cov}(\theta_i,\theta_j) &= \int \theta_i \theta_j g(\theta_i,\phi) g(\theta_j,\phi) f_{\phi}(\phi) \ d\theta_i\ d\theta_j\ d\phi - \left(\int \theta_i g(\theta_i,\phi) f_{\phi}(\phi) \ d\theta_i\ d\phi\right)\left(\int \theta_j g(\theta_j,\phi) f_{\phi}(\phi) \ d\theta_j\ d\phi\right) \\
& =  \int \theta_i \theta_j g(\theta_i,\phi) g(\theta_j,\phi) f_{\phi}(\phi) \ d\theta_i\ d\theta_j\ d\phi - \left(\int \theta_i g(\theta_i,\phi) f_{\phi}(\phi) \ d\theta_i\ d\phi\right)^2 \\
& =  \int \left( \int \theta_i g(\theta_i,\phi) \ d\theta_i \right) \left(\int \theta_j g(\theta_j,\phi) \ d\theta_j \right)f_{\phi} \ d\phi - \left(\int\left(\int \theta_i g(\theta_i,\phi)\ d\theta_i\right) f_{\phi}(\phi) \ d\phi\right)^2\\
& =  \int \left( \int \theta_i g(\theta_i,\phi) \ d\theta_i \right)^2f_{\phi} \ d\phi - \left(\int\left(\int \theta_i g(\theta_i,\phi)\ d\theta_i\right) f_{\phi}(\phi) \ d\phi\right)^2\\
& = \int h(\phi)^2 f_{\phi} \ d\phi - \left(\int h(\phi) f_{\phi}(\phi) \ d\phi\right)^2\\
& =  \int \left( h(\phi) - \int h(\phi) f_{\phi}(\phi)\ d\phi \right) ^2 f_{\phi} \ d\phi \\
&\ge  0.
\end{align*}

TOP

回复 8# tian27546西西

惊现西神

TOP

回复  tian27546西西

惊现西神
Tesla35 发表于 2013-10-21 10:39

妙不可言,不明其妙,不着一字,各释其妙!

TOP

回复  tian27546西西
惊现西神
Tesla35 发表于 2013-10-21 10:39

\[\sum_{k=1}^{n}\frac{1}{(r-1)!}\sum_{k=0}^{n-r}\frac{(-1)^k}{k!}\]
mf麻烦解决一下!

TOP

回复 13# 青青子衿

第一个和号下面是r吧

\[f(n)=\sum_{r=1}^n\frac{1}{(r-1)!}\sum_{k=0}^{n-r}\frac{(-1)^k}{k!}\]
\[f(n+1)=\sum_{r=1}^{n+1}\frac{1}{(r-1)!}\sum_{k=0}^{n+1-r}\frac{(-1)^k}{k!}\]
\[=\sum_{r=1}^{n+1}\frac{1}{(r-1)!}[\sum_{k=0}^{n-r}\frac{(-1)^k}{k!}+\frac{(-1)^{n+1-r}}{(n+1-r)!}]\]
\[=\sum_{r=1}^{n}\frac{1}{(r-1)!}\sum_{k=0}^{n-r}\frac{(-1)^k}{k!}+\sum_{r=1}^{n+1}\frac{(-1)^{n+1-r}}{(r-1)!(n+1-r)!}\]
\[=f(n)+\frac{(-1+1)^n}{n!}=f(n)\]
因此
\[f(n)=f(1)=1\]

TOP

回复 14# 战巡
衷心感谢!真心感谢!

TOP

返回列表 回复 发帖