免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

求助极限题

极限.png
2016-8-8 00:38
如图,谢了!
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

回复 1# dim


\[\sum_{k=1}^n k\ln(k)=\ln(\prod_{k=1}^nk^k)\]  
其中$\prod_{k=1}^nk^k$称为超阶乘,有
\[\prod_{k=1}^nk^k\sim An^{\frac{6n^2+6n+1}{12}}e^{-\frac{n^2}{4}}\]
其中$A\approx 1.282427$为格莱舍常数(Glaisher–Kinkelin Constant)

后面取对数神马的自己算吧
顺便告诉你,有
\[\int_0^{\frac{1}{2}}\ln(\Gamma(x))dx=\frac{3}{2}\ln(A)+\frac{5}{24}\ln(2)+\frac{1}{4}\ln(\pi)\]

TOP

回复 2# 战巡


    谢谢大神!其实我想知道的是‘‘顺便告诉你’’后面那些怎么得到的。。。

TOP

回复 3# dim


对$\ln(\Gamma(x))$傅里叶展开有当$0<x<1$时:
\[\ln(\Gamma(x))=(\frac{1}{2}-x)(\gamma+\ln(2))+(1-x)\ln(\pi)-\frac{1}{2}\ln(\sin(\pi x))+\frac{1}{\pi}\sum_{k=1}^\infty\frac{\sin(2\pi kx)\ln(k)}{k}\]
\[\int_0^{\frac{1}{2}}\ln(\Gamma(x))dx=\frac{1}{8}(\gamma+\ln(8)+3\ln(\pi))+\sum_{k=1}^\infty\frac{\ln(2k-1)}{(2k-1)^2\pi^2}\]

其中
\[\sum_{k=1}^\infty\frac{\ln(2k-1)}{(2k-1)^2}=\sum_{k=1}^\infty\frac{\ln(k)}{k^2}-\sum_{k=1}^\infty\frac{\ln(2k)}{(2k)^2}=\sum_{k=1}^\infty\frac{\ln(k)}{k^2}-\frac{1}{4}\sum_{k=1}^\infty\frac{\ln(k)+\ln(2)}{k^2}\]
\[=\frac{3}{4}\sum_{k=1}^\infty\frac{\ln(k)}{k^2}-\frac{\ln(2)\pi^2}{24}\]

而参见http://kuing.orzweb.net/viewthread.php?tid=3980&highlight=,有
\[\sum_{k=1}^\infty\frac{\ln(k)}{k^2}=-\zeta'(2)=\frac{\pi^2}{6}(12\ln(A)-\gamma-\ln(2)-\ln(\pi))\]

带入化简就有上面的最后结果

TOP

回复 4# 战巡


    谢谢大神了!

TOP

返回列表 回复 发帖