免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

关于级数和的问题

本帖最后由 血狼王 于 2016-6-6 22:29 编辑

设有数列 $\an$ 满足:
$a_1=t\in R^+,a_{n+1}=a_n-1+e^{-a_n}.$
求证当 $t\to \infty$ 时有:
$$\sum_{n=1}^\infty a_n=\frac{t(t+1)}{2}+C+o(1),$$
其中 $C$ 是一个常数。
(附加题:求出 $C$ 的值。)
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

当 $t\to \infty$ 时,$a_n>0$ 故 $a_{n+1}>a_n-1>a_{n-1}-2>\cdots>a_1-n$,所以有 \[n+1-a_{n+1}<1-a_1=1-t<0\tag{1}\]注意到不等式$e^{-x}<1\;(x>0)$,所以$a_{n+1}<a_n-1+1=a_n$
记\[S_n=\sum_{k=1}^na_k-\frac{n(n+1)}{2}<\sum_{k=1}^na_1-\frac{n(n+1)}{2}<nt-\frac{n(n+1)}{2}\]即 $S_n$ 有上界。
注意到$(1),于是$ \[S_n-S_{n+1}=n+1-a_{n+1}<0\]即$S_n$单调递增。
根据单调有界数列极限定理可知,$S_n$存在极限,值为\[C=\lim_{n\to \infty}S_n=\sum_{n=1}^{\infty}e^{-a_n}=0.502883757663428...\]

TOP

返回列表 回复 发帖