免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

求解广义积分

求解广义积分
\[\int_0^\pi \ln(1+\sin x) dx\]

_____kuing edit in $\LaTeX$_____
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

回复 1# 青青子衿
$\rmd{x}$呢?

TOP

结果应该是 $ 4\text{Catalan} -\pi \ln 2$
Let's solution say the method!

TOP

结果应该是 $ 4\text{Catalan} -\pi \ln 2$
pxchg1200 发表于 2013-10-3 12:37

请问是怎么得来的?

TOP

结果应该是 $ 4\text{Catalan} -\pi \ln 2$
pxchg1200 发表于 2013-10-3 12:37

这是用wolframalpha做的!
搜狗截图_2013-10-03_13-25-00.jpg
2013-10-3 13:25

TOP

回复 5# 青青子衿
你的一楼怎么能随便编辑而不留痕迹啊?

TOP

回复 6# 其妙

是我编辑的,所以没痕迹,我忘了标示一下
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

请问是怎么得来的?
青青子衿 发表于 2013-10-3 13:20

谁能给出过程!!!

TOP

本帖最后由 战巡 于 2013-10-13 13:08 编辑

\[\int_{0}^{\pi}ln(1+sin(x))dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}ln(1+cos(x))dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}ln(2cos^2(\frac{x}{2})dx\]
\[=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}ln(2)dx+\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}4ln(cos(x))dx={\pi}ln(2)+8\int_{0}^{\frac{\pi}{4}}ln(cos(x))dx\]
令$8\int_{0}^{\frac{\pi}{4}}ln(cos(x))dx=a$,有$a=8\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}ln(sin(x))dx$,则有
\[8\int_{0}^{\frac{\pi}{2}}ln(sin(x))dx-8\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}ln(sin(x))dx=-4{\pi}ln(2)-a=8\int_{0}^{\frac{\pi}{4}}ln(sin(x))dx\]
\[8\int_{0}^{\frac{\pi}{4}}ln(tan(x))dx=8\int_{0}^{\frac{\pi}{4}}[ln(sin(x))-ln(cos(x))]dx=-4{\pi}ln(2)-2a\]
\[8\int_{0}^{\frac{\pi}{4}}ln(tan(x))dx=8xln(tan(x))|_0^{\frac{\pi}{4}}-8\int_0^{\frac{\pi}{4}}xd[ln(tan(x))]=-8\int_0^{\frac{\pi}{4}}\frac{x}{sin(x)cos(x)}dx\]
\[=-8\int_0^{\frac{\pi}{4}}\frac{x}{tan(x)cos^2(x)}dx=-8\int_0^{\frac{\pi}{4}}\frac{x}{tan(x)}d[tan(x)]=-8\int_0^1\frac{arctan(x)}{x}dx\]
对这个泰勒展开得到
\[-8\int_0^1\frac{arctan(x)}{x}dx=-8\int_0^1\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{2n+1}dx=-8\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)^2}=-8G\]
其中$G$为卡塔兰常数
因此有
\[a=4G-2{\pi}ln(2)\]
\[\int_0^{\pi}ln(1+sin(x))dx={\pi}ln(2)+a=4G-{\pi}ln(2)\]

TOP

\[\int_{0}^{\pi}ln(1+sin(x))dx=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}ln(1+cos(x))dx=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}ln(2cos^2(\frac{x}{2})dx\]...
战巡 发表于 2013-10-13 11:06

万分感谢!!

TOP

回复 10# 青青子衿
战版来了!这些就是小儿科啦!
妙不可言,不明其妙,不着一字,各释其妙!

TOP

话说我还尝试过一开始就展开成全是 sinx 的级数和然后积分,出现了各种“!!”的东东……然后就动不了了……
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

回复 12# kuing
那个好像是傅里叶级数吧?
妙不可言,不明其妙,不着一字,各释其妙!

TOP

那么这个呢?$\int_\pi^\frac{3\pi}{2} \ln(1+\sin x) dx$

TOP

那么这个呢?$\int_\pi^\frac{3\pi}{2} \ln(1+\sin x) dx$
青青子衿 发表于 2013-10-25 18:20


这个简单啊...
\[\int_{\pi}^{\frac{3\pi}{2}}ln(1+\sin(x))dx=\int_{-\pi}^{-\frac{\pi}{2}}ln(1+\cos(x))dx=\int_{\frac{\pi}{2}}^{\pi}ln(1+\cos(x))dx\]
\[=\int_{\frac{\pi}{2}}^{\pi}ln(2)dx+4\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}ln(\cos(x))dx=\frac{\pi ln(2)}{2}+4\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}ln(\cos(x))dx\]
   
前面已经证明过$4\int_{0}^{\frac{\pi}{4}}ln(\cos(x))dx=2G-\pi ln(2)$,而已知$\int_0^{\frac{\pi}{2}}ln(\cos(x))dx=-\frac{\pi ln(2)}{2}$
可知
\[4\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}ln(\cos(x))dx=-2\pi ln(2)-2G+\pi ln(2)=-\pi ln(2)-2G\]
然后有
\[原式=-\frac{\pi ln(2)}{2}-2G\]

TOP

返回列表 回复 发帖