免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

极限化简

下面这式子还能不能进一步化简?要求用 $ f(w) $ 和其导数表示... N阶导数算到头大不知道最终表达式如何,不知道那个极限符号怎么去掉...
\[ \lim_{w\to 0}\frac{1}{N!}\frac{\rmd{^N}}{\rmd{w^N}}[ \frac{f(w)(w^{N+1}-z^{N+1})}{w-z}]\]
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

回复 1# ╰☆ヾo.海x


其实强攻也没什么......

\[\frac{d^N}{dw^N}[\frac{f(w)(w^{N+1}-z^{N+1})}{w-z}]=\frac{d^N}{dw^N}\sum_{i=0}^{N}f(w)w^iz^{N-i}\]
\[=\sum_{i=0}^{N}\sum_{j=0}^NC^j_N\frac{d^j}{dw^j}w^i\frac{d^{N-j}}{dw^{N-j}}f(w)z^{N-i}\]
\[=\sum_{i=0}^{N}\sum_{j\le i}C^j_N\frac{i!}{(i-j)!}w^{i-j}f^{(N-j)}(w)z^{N-i}\]
如果$f(w)$的各阶导数在$w=0$都连续,有:
\[\lim_{w\to 0}\sum_{i=0}^{N}\sum_{j\le i}C^j_N\frac{i!}{(i-j)!}w^{i-j}f^{(N-j)}(w)z^{N-i}=\sum_{i=0}^{N}\sum_{j\le i}\lim_{w\to 0}C^j_N\frac{i!}{(i-j)!}w^{i-j}f^{(N-j)}(w)z^{N-i}\]
\[=\sum_{i=0}^NC^i_Ni!f^{(N-i)}(0)z^{N-i}=\sum_{i=0}^N\frac{N!}{(N-i)!}f^{(N-i)}(0)z^{N-i}\]
\[\lim_{w\to 0}\frac{1}{N!}\frac{d^N}{dw^N}[\frac{f(w)(w^{N+1}-z^{N+1})}{w-z}]=\sum_{i=0}^N\frac{1}{(N-i)!}f^{(N-i)}(0)z^{N-i}=\sum_{i=0}^N\frac{1}{i!}f^{(i)}(0)z^i\]

TOP

本帖最后由 ╰☆ヾo.海x 于 2014-11-23 20:58 编辑

回复 2# 战巡

说实话我看到连着2个求和符号在一起就头大,你这里还夹着N阶导数,就更让人头疼了..完全没法冷静看下去.....你说说思路都好过啊...

好吧,算了半天算到了个结果,还是跟你的不太一样,不知道哪里错了.....

我是先将 $ f(w) $ 泰勒展开,连同 $ a^n-b^n $ 的展开式一并带入,变成2个大括号的乘积;然后全部乘开来,并将 $ w $ 的同次项归纳到一起;最后求N阶导数,并代入极限,得到:
\[ \lim_{w\to 0}\frac{\rmd{^N}}{\rmd{w^N}}[\frac{f(w)(w^{N+1}-z^{N+1})}{w-z} ]=N(f(0)+f'(0)z+\frac{f^{(2)}(0)}{2!}z^2+\cdots +\frac{f^{(N)}(0)}{N!}z^N)\]

TOP

我是大傻逼.. 知道哪错了......是N!不是N...

TOP

返回列表 回复 发帖