免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[数论] 证明:$m$正有理数,若$m+\frac 1m$为整数,则$m=1$

证明:若$m$是正有理数,那么$m+\frac 1m$为整数的充分必要条件是$m=1$。
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

设 $m+1/m=k\in\mbb N^+$,解得 $m=\bigl(k\pm\sqrt{k^2-4}\bigr)/2$,故必有 $k^2-4=p^2$,其中 $p\in\mbb N$,则 $(k-p)(k+p)=4$,……

TOP

本帖最后由 realnumber 于 2014-9-26 15:46 编辑

若m≠1,设$m=\frac{q}{p},(p,q)=1,p,q为正整数,至少一个大于1$,
则$m+\frac{1}{m}=\frac{p^2+q^2}{pq},而(p^2+q^2,pq)=((p-q)^2,pq)$
而$(\abs{p-q},pq)=1,$即$m+\frac{1}{m}$不是整数,矛盾.

修改了下

TOP

回复 3# realnumber

高大上的证法表示没看懂……

TOP

回复 4# kuing

有理数就是可以写成两个整数之比的数。。。故可那样设。。

TOP

回复 5# hsq

设的地方我懂,没懂的是最大公约数的变化那里……

TOP

回复 4# kuing


    修改了下,这下好点了没,以前有错误

TOP

回复 7# realnumber

$(\abs{p-q},pq)=1$ 是咋证的

TOP

回复 8# kuing


    已知条件有(p,q)=1,
不妨设p>q,则(p-q,p)=1,且(p-q,q)=1,自然有(p-q,pq)=1

TOP

回复 9# realnumber

大约似乎应该差不多基本上可能大致上几乎懂了……

TOP

回复 10# kuing

TOP

回复  realnumber

$(\abs{p-q},pq)=1$ 是咋证的
kuing 发表于 2014-9-26 16:06


这个真的很数论了,就

TOP

回复 12# isee

所以我就反应不过来了……数论渣渣

TOP

返回列表 回复 发帖