免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[不等式] 文科数学一题

锐角三角形ABC,求证:$\sin A+\sin B+\sin C \ge \cos A+\cos B +\cos C$
学生的做法$A+B\ge 90\du, A\ge 90\du-B,\sin A \ge \cos B$
我的做法 平方后等价于$0\ge \cos{(2A)}+ \cos{(2B)}+ \cos{(2C)}+2\cos{(A+B)}+2\cos{(A+C)}+2\cos{(C+B)}$
可以证明$\cos{(2A)}+ \cos{(2B)}+2\cos{(A+B)}\le 0$
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

现在三角函数复杂的变换现在要求极低。

第一种证法拿来强化领悟诱导公式,多好啊,呵呵。

===
原猜想原来早有了,而且成立。



推广可见楼下kuing的证明

TOP

$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

多漂亮,我转过来:


下面证明在非钝角 $\triangle ABC$ 中恒有
\[\sin A+\sin B+\sin C\geqslant \cos A+\cos B+\cos C+1.\]
证明:
\begin{align*}
& \sin A+\sin B-\cos A-\cos B \\
={}& 2\cos \frac{A-B}2\sin \frac{A+B}2-2\cos \frac{A-B}2\cos \frac{A+B}2 \\
={}& 2\cos \frac{A-B}2\left( \cos \frac C2-\sin \frac C2 \right),
\end{align*}
由 $\triangle ABC$ 为非钝角三角形易知 $\cos(C/2)\geqslant\sin(C/2)$ 以及 $\abs{A-B}\leqslant \pi-A-B=C$,于是得到
\begin{align*}
\sin A+\sin B-\cos A-\cos B&\geqslant 2\cos \frac C2\left( \cos \frac C2-\sin \frac C2 \right) \\
& =1+\cos C-\sin C,
\end{align*}

\[\sin A+\sin B+\sin C\geqslant \cos A+\cos B+\cos C+1.\]

by kuing

TOP

返回列表 回复 发帖