免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[组合] 分球问题

编号依次为1,1,2,2,3,3,4,5的8个球,分给4位同学,每人2球,且2球编号不同,问有几种分法?

确认下,答案是否为204.
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

只看,不做

TOP


回复 2# 乌贼

TOP

回复 3# realnumber


    我算的是264

TOP

回复 3# realnumber
楼主的题从没做对,怕了

TOP

本帖最后由 007 于 2014-4-25 16:42 编辑

回复 4# 007

264是错的,重复了
应该是240
无标题.png
2014-4-25 16:42

TOP

回复 5# 乌贼


    不怕,不怕.会有机会的.

TOP

楼主的题从没做对,怕了
乌贼 发表于 2014-4-25 16:16

我也是楼主的题从不敢做(除了一些简单的不等式),我也怕了,

TOP

我用$(a+b+c+d)^2(ab+ac+ad+bc+bd+cd)^3$这个模型算到204

TOP

本帖最后由 realnumber 于 2014-4-25 18:50 编辑

回复 6# 007


    $A_4^4$这个做法应该是错误的.这么分组(1,5),(1,4),(2,3),(2,3)那么取第三组和第四组的人交换下也没区别.这种情况下,继续下去,分给人,应该是$C_4^2A_2^2$

TOP

回复 8# 其妙


    坏人,这个不是变相抵制了啊.

TOP

回复 11# realnumber

TOP

回复 10# realnumber


     是的
007
123

TOP

本帖最后由 realnumber 于 2014-4-25 23:44 编辑

1.4,5搭配在一起,余下只能是12,13,23
共有$A_4^4=24$
2.4x,5x搭配(比如41,51),那么有$C_3^1A_4^2=36$
3.4x,5y搭配($x\ne y$),那么有$A_3^2A_4^4=144$
所以一共有$24+36+144=204$.

TOP

$
\begin{pmatrix}
x_{11} & x_{12} & x_{13} & x_{14} & 2\\
x_{21} & x_{22} & x_{23} & x_{24} & 2\\
x_{31} & x_{32} & x_{33} & x_{34} & 2\\
x_{41} & x_{42} & x_{43} & x_{44} & 1\\
x_{51} & x_{52} & x_{53} & x_{54} & 1\\
2 & 2 & 2 & 2 & X\\
\end{pmatrix}
$

横着看是$(a+b+c+d)^2(ab+ac+ad+bc+bd+cd)^3$中$a^2b^2c^2d^2$的系数

竖着看是$(ab+ac+ad+ae+bc+bd+be+cd+ce+de)^4$中$a^2b^2c^2de$的系数

有方法算吗?

TOP

$\displaystyle\frac{1}{16}(s_1^2-s_2)^4=\frac{1}{16}(s_1^8-4s_1^6s_2+6s_1^4s_2^2-4s_1^2s_2^3+s_2^4)$

$\displaystyle\frac{1}{16}(\frac{8!}{2!2!2!1!1!}-4(C_3^1\frac{6!}{2!2!1!1!})+6(2C_3^2\frac{4!}{2!1!1!})-4(6C_3^3\frac{2!}{1!1!})+0)$

$\displaystyle=\frac{1}{16}(5040-4(540)+6(72)-4(12))=204$

TOP

$\displaystyle\frac{1}{8}s_1^2(s_1^2-s_2)^3=\frac{1}{8}(s_1^8-3s_1^6s_2+3s_1^4s_2^2-s_1^2s_2^3)$

$\displaystyle\frac{1}{8}(\frac{8!}{2!2!2!2!}-3(C_4^1\frac{6!}{2!2!2!})+3(2C_4^2\frac{4!}{2!2!})-C_4^1\frac{3!}{1!1!1!})$

$\displaystyle=\frac{1}{8}(2520-3(360)+3(72)-24)=204$

TOP

回复 17# tommywong
先进方法!牛!

TOP

回复 17# tommywong


    看不懂,如果给个台阶就好了.

TOP

回复 19# realnumber

17#只用了$\sum ab=\frac{1}{2}(\sum a)^2-\frac{1}{2}\sum a^2$和多项式定理的$\displaystyle\frac{n!}{r_1!r_2!...r_n!}$

TOP

返回列表 回复 发帖