免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[函数] 来自群的函数不等式 $e^x-\ln x>\sqrt5$

教师-肖月(7868*****)  13:55:53
怎么证明e^x-lnx>sqrt5

令 $f(x)=e^x-\ln x$,则 $f'(x)=e^x-1/x$,显然 $f'(x)$ 在 $(0,+\infty )$ 上单调增,且 $\lim_{x\to 0^+}f'(x)=-\infty$, $\lim_{x\to +\infty }f'(x)=+\infty$,可见存在唯一的 $ x_0\in (0,+\infty )$ 使得 $f'(x_0)=0$,而
\[f'(x_0)=0\iff e^{x_0}=\frac1{x_0}\iff x_0=-\ln x_0,\]

\[f(x)_{\min }=f(x_0)=e^{x_0}-\ln x_0=\frac1{x_0}+x_0,\]
又因为
\[\frac1{x_0}=e^{x_0}>x_0+1\riff x_0<\frac{\sqrt5-1}2, \]
从而
\[f(x)_{\min }=\frac1{x_0}+x_0>\frac2{\sqrt5-1}+\frac{\sqrt5-1}2=\sqrt5.\]
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
冇钱又冇样、冇型又冇款、冇身材又冇文采、冇学历又冇能力、冇高度冇速度冇力度兼夹冇野做!(粤语)
口号:珍爱生命,远离考试。

en  ,现在修改为\[e^x-\ln x>2.3\]

TOP

回复 2# realnumber

$\frac{1}{x_0}=e^{x_0}>1+x_0+\frac{x_0^2}{2}$
解得$x_0<0.6$
  精度就够了……

TOP

回复 2# realnumber

不要没事胡乱改题,这样的改法没有意义

这个题正统的做法就是强解出$e^x·x=1$,虽然没有代数解,但我完全可以用牛顿切线不断迭代,求出任意精度的近似解,你改得再接近也能求出来,大不了多迭代几步

TOP

嗯,这样弄下去无非是对 $x_0$ 做估计。

继续沿用上面的东西,由于 $x_0=-\ln x_0$,故显然 $0<x_0<1$,容易证明对于任意 $x\in(0,1)$ 恒有
\[\ln x>\frac12\left(x-\frac1x\right),\]

\[x_0=-\ln x_0<-\frac12\left(x_0-\frac1{x_0}\right) \riff x_0<\frac1{\sqrt3},\]
从而
\[f(x)_{\min }=\frac1{x_0}+x_0>\sqrt3+\frac1{\sqrt3}\approx 2.3094.\]
冇钱又冇样、冇型又冇款、冇身材又冇文采、冇学历又冇能力、冇高度冇速度冇力度兼夹冇野做!(粤语)
口号:珍爱生命,远离考试。

TOP

最近流行虚设零点法

TOP

回复 6# 其妙

一点都不虚……

TOP

回复 7# kuing
那是,实际上是存在的,,并且被你压缩到那么小的范围内了,而且又见那两个著名的对数不等式……

TOP

回复 8# 其妙

那些对数不等式其实我也不是很熟悉,话说你有没有总结过或者说收集过这类不等式?

TOP

回复 9# kuing
没收集过,
只是隐约知道有5个左右这样的不等式(高考里),写出来你都看见过的

TOP

回复 10# 其妙

好吧,我开贴收集,你来补充

TOP

回复 11# kuing


    这结果还是有趣味的

TOP

回复  其妙

好吧,我开贴收集,你来补充
kuing 发表于 2014-3-25 20:32


给我出难题啦,

TOP

回复 13# 其妙

去吧,贴子我都发好了

TOP

回复 14# kuing
去了,,充数了,

TOP

回复 4# 战巡
娱乐,不是也被你和kuing,555秒了吗?
如果出在模拟卷里,那就不美了.

TOP

回复 16# realnumber


    难道不是导数压轴题里的一步?

TOP

回复 17# isee

TOP

回复  战巡
娱乐,不是也被你和kuing,555秒了吗?
如果出在模拟卷里,那就不美了. ...
realnumber 发表于 2014-3-26 08:41



    今天看到惠州高三二调文科压轴就是将根号5改成了2,真是卡住了很多。。。。

TOP

回复 3# Tesla35

如何解这个三次不等式?可以帮忙写详细点吗?

TOP

返回列表 回复 发帖