免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
Board logo

标题: [不等式] 二元的恒成立存在性问题 [打印本页]

作者: 郝酒    时间: 2019-3-12 16:28     标题: 二元的恒成立存在性问题

$\forall x_1\in R,\exists x_2\in [3,4]$使得$x_1^2+x_1x_2+x_2^2\geq 2x_1+mx_2+3$成立,求m的取值范围.

我是这样求的:改造成对$\forall x_1\in R,\exists x_2\in [3,4]$,$x_2^2+(x_1-m)x_2+x_1^2-2x_1-3\geq 0$,即$(x_2^2+(x_1-m)x_2+x_1^2-2x_1-3)_{\max}\geq 0$,得到对$\forall x_1\in R$,$m\leq \frac{x_1^2+x_1+6}{3}$或$m\leq \frac{x_1^2+2x_1+13}{4}$成立,所以$m\leq (\max\{\frac{x_1^2+x_1+6}{3},\frac{x_1^2+2x_1+13}{4}\})_\min$,解得$m\leq 3$.


我的问题是,还有没有其它的解法,以及如果把不等式改成$x_1^2+x_1x_2+x_2^2\leq 2x_1+mx_2+3$,该如何解.
作者: kuing    时间: 2019-3-12 16:56

不等式变为
\[\frac1{x_2}\left(x_1+\frac{x_2-2}2\right)^2+\frac34x_2-\frac4{x_2}+1\geqslant m,\]所以化为
\[\max_{x_2\in[3,4]}\left(\frac34x_2-\frac4{x_2}+1\right)\geqslant m,\]左边关于 `x_2` 递增,所以代 `x_2=4` 得 `3\geqslant m`。

反过来肯定是不存在的。




欢迎光临 悠闲数学娱乐论坛(第2版) (http://kuing.orzweb.net/) Powered by Discuz! 7.2