免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[几何] 连杆(linkage)

连杆爱好者上木敬士郎近日在推特上分享了两个连杆机构,它们能绘制水滴形曲线.
水滴.gif
水滴 (1).gif
水滴 (2).gif
他还分享了一个视频来演示用ggb制作连杆动画的步骤
半月前他分享了两个连杆机构,它们能绘制双纽线.
双纽线.gif
双曲线.gif
他还分享了一个视频来演示用ggb制作五角曲线的步骤
一年前他分享了一种连杆机构,它们能绘制圆角多边形.
多边形.gif

有点儿意思

TOP

椭圆
椭圆.gif
注意到三个端点共线且线段比为定值,化为如下结论:
C和D分别绕A和B旋转,速度相等,方向相反.$\vv{CE}=k\vv{CD}$,k为定值,则E的轨迹是椭圆.
证:设A(-a,0),B(0,0),AC=$r_1$,BD=$r_2$,则$C\left(r_1\cos{t}-a,r_1\sin{t}\right),D\left(r_2\cos(\beta-t),r_2\sin(\beta-t)\right)$,则$E\left((1-k)r_1\cos{t}+kr_2\cos(\beta-t)+(k-1)a,(1-k)r_1\sin{t}+kr_2\sin(\beta-t)\right)$
消去t得$\left(k r_2 (\sin \beta (a (1-k)+x)-y \cos \beta )+(k-1) r_1 y\right)^2+\left(k r_2 (  (a (k-1)-x)-y \sin \beta )\cos \beta+(k-1) r_1 (a (k-1)-x)\right)^2-\left((k-1)^2 r_1^2-k^2 r_2^2\right)^2=0$
判别式=$-4 \left((k-1)^2 r_1^2-k^2 r_2^2\right)^2$,
所以E的轨迹是一个椭圆(在$\frac{r_1}{r_2}=\pm\frac k{k-1}$时退化为线段),其轴的倾斜角为$\frac{\beta}2$(出人意料地简洁).
吐.png
线段
线段.gif
新月
月牙.gif
圆和其他一个曲线的并
圆和其他一个曲线的并.gif
其绘制过程

TOP

本帖最后由 hbghlyj 于 2021-6-12 20:05 编辑

1.gif
轨迹方程为$y^4 \left(2 c^2-8 e^2+3 x^2+2\right)+y^2 \left(c^2 \left(-8 e^2+4 x^2-2\right)+c^4-8 e^2 \left(2 x^2+1\right)+16 e^4+3 x^4+1\right)+x^2 \left(c^2-4 e^2+x^2-1\right)^2+y^6=0$
其中c=AC,e=OE.

当0<c<1时,红色曲线围成的面积为$\pi  \left(c^2+\frac{2 e^2}{c+1}-2 e^2\right)$
当c>1时,红色曲线围成的面积为$\pi  \left(c^2-\frac{2 e^2 }{c+1}-2 e^2\right)$

TOP

本帖最后由 hbghlyj 于 2021-6-13 03:54 编辑

题1.(3#的画椭圆的连杆的退化)
O是圆$O_1,O_2$的外位似心,$A_1,A_2$分别在圆$O_1,O_2$上绕圆心反向等速旋转,且恒有$\angle OO_1A_1=\angle OO_2A_2$,A在$A_1A_2$上使$AA_1A_2\sim OO_1O_2$,则A的轨迹为过O的线段.
吐.png
证:作$A_2$关于$OO_1O_2$的对称点$A_2′$,则$A_1A_2′O$共线且$A_1A_2′:A_1O=O_1O_2:O_1O=A_1A_2:A_1A$,故$A_2A_2′\parallel OA$,即OA⊥$OO_1O_2$.
题2.绿色虚线四边形恒为矩形
QQ图片20210611113719.jpg
QQ图片20210611113719.jpg

TOP

1.gif 2.gif 3.gif 4.gif
Rose_(mathematics)
原推特链接
4叶.ggb (7.04 KB)

TOP

本帖最后由 hbghlyj 于 2021-6-13 03:51 编辑

关于绘制复杂曲线有:加算器,乘算器,中继器
ケンペの加算器
2つの角度の足し算をするリンク机构です

吐.png
红色角+绿色角=紫色角
应用:
x=cos(9t)-sin(4t)
y=cos(t)-sin(5t)
的画法见这里
为了方便观察,分离出它的本轮部分,在这里

TOP

TOP

本帖最后由 hbghlyj 于 2021-6-13 15:10 编辑

1876年,Alfred B. Kempe发表了他的文章“On a General Method of describing Plane Curves of the nth degree by Linkwork",该文章表明,对于任意平面代数曲线,可以构建绘制该曲线的连杆。连杆和代数曲线之间的这种直接联系已被命名为肯普普适定理(英语维基:Kempe's universality theorem)。
一个初等证明

TOP

TOP

本帖最后由 青青子衿 于 2021-6-24 21:39 编辑

\begin{gather*}
A(0,0),\quad\,B(*,*),\quad\,C(**,**),\quad\,D(d,0)\\
|AB|=a,\quad\,|BC|=b,\quad\,|CD|=c\\
|BE|=l
\end{gather*}

\begin{align*}
T&=(b-l)\sqrt{4l^{2}\left(x^{2}+y^{2}\right)-\left(x^{2}+y^{2}+l^{2}-a^{2}\right)^{2}}\\
U&=2l\left(x-d\right)\left(x^{2}+y^{2}\right)+(b-l)x\left(x^{2}+y^{2}+l^{2}-a^{2}\right)-yT\\
V&=2ly\left(x^{2}+y^{2}\right)+(b-l)y\left(x^{2}+y^{2}+l^{2}-a^{2}\right)+xT\\
W&=2lc\left(x^{2}+y^{2}\right)
\end{align*}

\begin{aligned}
\begin{split}
U^{2}+V^{2}&=W^{2}\\
\left(U+2yT\right)^{2}+\left(V-2xT\right)^{2}&=W^{2}
\end{split}
\end{aligned}

TOP

回复 8# hbghlyj
QQ图片20210616160619.jpg
几何自动推理:第二届国际研讨会,ADG'98 中国北京,1998 年 8 月 1-3 日第250页
给定任意平面代数曲线,自动设计可用于绘制该曲线的连杆

TOP

好看

TOP

本帖最后由 hbghlyj 于 2021-6-21 01:07 编辑

给定点A,B,C,D,O,若在圆O(r)上存在点E,F使$\triangle$ABE$\cong$$\triangle$CDF,求r的最小值.
QQ图片20210616170103.jpg
作O'使$\triangle$ABO$\cong$$\triangle$CDO',则r的最小值是OO'/2.
我们还可以注意一个现象,就是当圆的直径小到某一个值的时候,便止住那个值而无法在小下去(来源)

TOP

\begin{align*}
\Phi&=d\left(b-l\right)y\sqrt{4l^{2}\left(x^{2}+y^{2}\right)-\left(x^{2}+y^{2}+l^{2}-a^{2}\right)^{2}}\\
P&=\left(x^{2}+y^{2}\right)\left[b\left(x^{2}+y^{2}-l^{2}-a^{2}\right)+l\left(a^{2}+b^{2}+c^{2}-d^{2}-2dx\right)\right]\\
Q&=d\left(b-l\right)x\left(x^{2}+y^{2}+l^{2}-a^{2}\right)
\end{align*}
\[\Phi^2=(P-Q)^2\]

TOP

回复 3# hbghlyj


    像个戴着个帽子~

TOP

返回列表 回复 发帖