免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

越奥论坛上的两道积分Inequ

本帖最后由 青青子衿 于 2021-6-8 22:22 编辑

积分不等式证明题
I)给定$\,h\colon[0,1]\to\mathbb{R}\,$是一个下凸函数,并满足$\,h(0)=0\,$,证明
\[\int_0^1h(x)\mathrm{d}x\leq\frac{3}{2}\int_0 ^1xh(x)\mathrm{d}x\>;\]
II)给定$\,f\colon[0,1]\to\mathbb{R}\,$是一个上凸函数,并满足$\,f(0)=1\,$,证明:
\[\int_0^1xf (x)\mathrm{d}x\leq \frac{2}{3}\left[\int_0^1f(x)\mathrm{d}x\right]^2\>.\]

http://forum.mathscope.org/showthread.php?t=18526
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

本帖最后由 青青子衿 于 2021-6-8 22:23 编辑

I)由于$\,h(x)\,$为下凸函数,对于每个 $x\in [0,1] $ ,利用Hadamard不等式,则有
\begin{align*}
\int_0^1 h(t)\,\mathrm{d}t&=\int_0^xh(t)\,\mathrm{d}t + \int_x^1h(t)\,\mathrm{d}t\\
&\leq\,x\cdot\frac{h(x)+h(0)}{2}+\int_x^1h(t)\,\mathrm{d}t\\
&=\dfrac{x\cdot\,\!h(x)}{2}+\int_x^1h(t)\,\mathrm{d}t
\end{align*}
【Hadamard不等式】http://kuing.orzweb.net/viewthread.php?tid=634&extra=page%3D2

对$\,x\,$从 0 到 1 积分,交换积分次序可得第一个积分不等式

\begin{alignat*}{4}
&&\int_0^1\int_0^1 h(t)\,\mathrm{d}t\mathrm{d}x
&\leq\dfrac{1}{2}\int_0^1x\cdot\,\!h(x)\mathrm{d}x+\int_0^1\int_x^1h(t)\,\mathrm{d}t\mathrm{d}x\\  
\Rightarrow\quad&&\int_0^1 h(t)\,\mathrm{d}t
&\leq\dfrac{1}{2}\int_0^1x\cdot\,\!h(x)\mathrm{d}x+\int_0^1\int_0^{t}h(t)\,\mathrm{d}x\mathrm{d}t\\
&&
&=\dfrac{1}{2}\int_0^1x\cdot\,\!h(x)\mathrm{d}x+\int_0^1t\cdot\,\!h(t)\,\mathrm{d}t\\
\Rightarrow\quad&&\int_0^1 h(x)\,\mathrm{d}x
&\leq\dfrac{3}{2}\int_0^1x\cdot\,\!h(x)\mathrm{d}x\\
\end{alignat*}
※※※※※  ※※※※※  ※※※※※
II)由于$\,f(x)\,$为上凸函数,取函数 $\,h(x)=1-f(x)\,$,
则$\,h(x)\,$为下凸函数,且满足$\,h(0)=1-f(0)=0\,$,于是
\begin{alignat*}{4}   
&&\int_0^1 h(x)\,\mathrm{d}x  
&\leq\dfrac{3}{2}\int_0^1x\cdot\,\!h(x)\mathrm{d}x\\  
\Rightarrow\quad&&\int_0^1\Big[1-f(x)\Big]\,\mathrm{d}x  
&\leq\dfrac{3}{2}\int_0^1x\cdot\Big[1-f(x)\Big]\mathrm{d}x\\
\Rightarrow\quad&&1-\int_0^1f(x)\,\mathrm{d}x  
&\leq\dfrac{3}{4}-\dfrac{3}{2}\int_0^1x\cdot\,\!f(x)\,\mathrm{d}x\\  
\Rightarrow\quad&&\dfrac{3}{2}\int_0^1x\cdot\,\!f(x)\,\mathrm{d}x  
&\leq\int_0^1f(x)\,\mathrm{d}x-\dfrac{1}{4}\\
\Rightarrow\quad&&-\int_0^1x\cdot\,\!f(x)\,\mathrm{d}x  
&\geq\dfrac{2}{3}\left[-\int_0^1f(x)\,\mathrm{d}x+\dfrac{1}{4}\right]\\  
\end{alignat*}
取原不等式两端作差,有
\begin{align*}
T&=\frac{2}{3}\left[\int_0^1f(x)\,\mathrm{d}x\right]^2-\int_0^1xf(x)\,\mathrm{d}x\\
&\geq\dfrac{2}{3}\left\{\left[\int_0^1f(x)\,\mathrm{d}x\right]^2-\int_0^1f(x)\,\mathrm{d}x+\dfrac{1}{4}\right\}\\
&=\dfrac{2}{3}\left[\int_0^1f(x)\,\mathrm{d}x-\dfrac{1}{2}\right]^2\\
&\geq0
\end{align*}
故原积分不等式成立

TOP

返回列表 回复 发帖