免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

这个极限怎么算的???

1.jpg
2020-6-24 14:25


万能的版友们,这个极限的计算过程中从红框到篮框用了什么公式定理,实在迷惑呀。。。
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

我也看不懂……

我的做法会是这样:
\begin{align*}
&(a+1)x+1-\sqrt{(a-1)^2x^2+2(a+1)x+1}\\
={}&\frac{[(a+1)x+1]^2-[(a-1)^2x^2+2(a+1)x+1]}{(a+1)x+1+\sqrt{(a-1)^2x^2+2(a+1)x+1}}\\
={}&\frac{4ax^2}{(a+1)x+1+\sqrt{(a-1)^2x^2+2(a+1)x+1}},
\end{align*}所以当 `x\to0` 时
\[(a+1)x+1-\sqrt{(a-1)^2x^2+2(a+1)x+1}\sim2ax^2,\]因此
\[\lim_{K\to0}\text{原式}=\lim_{K\to0}\frac{2a(czK)^2}{z\cdot2a(cK)^2}=z.\]

TOP

$\sqrt{1+AK+BK^2}=1+\binom{1/2}{1}(AK+BK^2)+\binom{1/2}{2}(AK+BK^2)^2+o(K^2)$
$=1+\frac{1}{2}AK+\left(\frac{1}{2}B-\frac{1}{8}A^2\right)K^2+o(K^2)$

TOP

返回列表 回复 发帖