免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[数列] 来自讨论组 585 的幂上幂求和

教学乡长(2654******) 2020-4-12 22:49:22
TIM截图20200413014255.jpg
2020-4-13 01:43

这个能算吗
裂项?
裂项似乎不太容易,却因为通项带有 `x` 让我想到可以用函数的方式去撸。

设前 `n` 项和为 `S_n(x)`,则
\[\frac{S_n(x)}x=\sum_{k=1}^n\frac{2^{k-1}x^{2^{k-1}-1}}{1+x^{2^{k-1}}},\]积分得
\begin{align*}
\int\frac{S_n(x)}x\rmd x&=\sum_{k=1}^n\int\frac{2^{k-1}x^{2^{k-1}-1}}{1+x^{2^{k-1}}}\rmd x\\
&=\sum_{k=1}^n\int\frac1{1+x^{2^{k-1}}}\rmd(x^{2^{k-1}})\\
&=\sum_{k=1}^n\ln(1+x^{2^{k-1}})+C\\
&=\ln\bigl((1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^{n-1}})\bigr)+C\\
&=\ln\frac{(1-x^2)(1+x^2)(1+x^4)\cdots(1+x^{2^{n-1}})}{1-x}+C\\
&=\ln\frac{(1-x^4)(1+x^4)\cdots(1+x^{2^{n-1}})}{1-x}+C\\
&=\cdots\\
&=\ln\frac{1-x^{2^n}}{1-x}+C,
\end{align*}所以
\[\frac{S_n(x)}x=\left( \ln\frac{1-x^{2^n}}{1-x} \right)'=\frac{2^nx^{2^n-1}}{x^{2^n}-1}-\frac1{x-1},\]即
\[S_n(x)=\frac{2^nx^{2^n}}{x^{2^n}-1}-\frac x{x-1}.\]
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
$\href{https://kuingggg.github.io/}{\text{About Me}}$

酷版,有初等解法吗

TOP

以下是今早讨论组的部分聊天记录:

教**长 8:02:36
根据答案裂项

QQ图片20200413142227_c.jpg
2020-4-13 14:43


生**花 9:48:16
QQ图片20200413142453_c.jpg
2020-4-13 14:43

上次x=3做的
这题添一项,似乎更方便

角**,夜** 10:17:28
翻到一个类似的
QQ图片20200413142921_c.jpg
2020-4-13 14:43


角**,夜** 10:48:52
想起一个吓人但似乎没什么用的等式
QQ图片20200413143513_c.png
2020-4-13 14:43


角**,夜** 11:11:29
QQ图片20200413143629_c.png
2020-4-13 14:43
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

似应为$\frac{2^{n-1} \cdot(n-1) !}{(2 n-1) !}-\frac{2^{n} \cdot n !}{(2 n+1) !}=\frac{n \cdot 2^{n+1} \cdot n !}{(2 n+1) !}$

TOP

本帖最后由 青青子衿 于 2020-12-30 10:07 编辑

\begin{align*}
\color{black}{\dfrac{p^{2^{n-1}}}{p^{2^{n-1}}-1}-\dfrac{p^{2^{n+1}}}{p^{2^{n+1}}-1}-\left(\dfrac{p^{2^{n-1}}}{p^{2^n}-1}-\dfrac{p^{2^n}}{p^{2^{n+1}}-1}\right)=\dfrac{2p^{2^n}}{p^{2^{n+1}}-1}}
\end{align*}

\begin{align*}
\color{black}{\dfrac{2^n\cdot\,\!n!(n-1)!}{(2n-1)!}-\dfrac{2^{n+1}\cdot\,\!n!(n+1)!}{(2n+1)!}=\dfrac{n\cdot2^{n+1}\cdot\,\!(n!)^2}{(2n+1)!}}
\end{align*}
\begin{align*}
\color{black}{\dfrac{2^{n-1}\cdot\,\!(n-1)!}{(2n-1)!}-\dfrac{2^n\cdot\,\!n!}{(2n+1)!}=\dfrac{n\cdot2^{n+1}\cdot\,\!n!}{(2n+1)!}}
\end{align*}


\begin{align*}
\left|\frac{n+1}{2^{n-1}-\left(n+1\right)}-\frac{n+2}{2^{n}-\left(n+2\right)}\right|\geqslant\frac{n}{2^{n}-n}
\end{align*}

TOP

返回列表 回复 发帖