免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[数论] 不定方程

本帖最后由 hbghlyj 于 2020-1-9 18:27 编辑

对于$\frac1{x_1}+\frac1{x_2}+\ldots+\frac1{x_n}+\frac1{x_1x_2\ldots x_n}=1$型不定方程,$x_1,x_2,\ldots ,x_n\in \mathbf N_+$,前n个西尔维斯特数是其一组解,会不会有其他正整数解?
n=4,5时方程只有一组解,n=6时?

本帖最后由 hbghlyj 于 2020-1-16 10:49 编辑

相关问题
设整数n>1,n|$s_n=2^{\phi(n)}+3^{\phi(n)}+\cdots+n^{\phi(n)}$,记$p_1,p_2\cdots p_k$k为n的全体不同素因子,求证$\frac1{p_1}+\frac1{p_2}+\cdots+\frac1{p_k}+\frac1{p_1p_2\cdots p_k}$是整数
  1. In[3]:= Select[Range[1000],Divisible[Sum[i^EulerPhi[#],{i,2,#}],#]&]
  2. Out[3]= {1,2,6,42}
复制代码
这个整数是否一定是1
证明:先证明n无平方因子.若存在素数p使$n=p^2m$,m,则$1+s_n\equiv0^{\phi(n)}+1^{\phi(n)}+2^{\phi(n)}+3^{\phi(n)}+\cdots+(n-1)^{\phi(n)}\equiv\sum\limits_{j=0}^{mp-1}\sum\limits_{k=0}^{p-1}(jp+k)^{\phi(n)}\equiv\sum\limits_{j=0}^{mp-1}\sum\limits_{k=0}^{p-1}k^{\phi(n)}=mp\sum\limits_{k=0}^{p-1}k^{\phi(n)}\equiv0\pmod p$,即$p|1+s_n$,但$p|n,n|s_n$,矛盾
所以$n=p_1p_2\cdots p_k,p_1<p_2<\cdots<p_k$为素数.因为$\phi(p_i)|\phi(n)$,由费马小定理$s_n\equiv n-\frac n{p_i}-1\equiv0\pmod p_i$,所以$p_i|1+\frac n{p_i}$,i,$p_1p_2\cdots p_k|\frac n{p_1}+\frac n{p_2}+\cdots+\frac n{p_k}n+1=p_2p_3\cdots p_k+p_1p_3\cdots p_k+\cdots+p_1p_2\cdots p_{k-1}+1$

TOP

返回列表 回复 发帖