免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[函数] 有理化因式

本帖最后由 hbghlyj 于 2019-9-20 22:49 编辑

f(${{\text{x}}_1},{x_2}, \cdots ,{x_n}$)为多项式函数,求证:$f(\sqrt {{{\text{x}}_1}} ,\sqrt {{x_2}} , \cdots ,\sqrt {{x_n}} )$的有理化为 $\mathop \sum \limits_{\matrix
   {{{\text{i}}_1} = \left| {{i_2}} \right| =  \cdots  = \left| {{{\text{i}}_{\text{n}}}} \right| = 1}  \\
} {\text{f}}\left( {{{\text{i}}_1}\sqrt {{{\text{x}}_1}} ,{{\text{i}}_2}\sqrt {{{\text{x}}_2}} , \cdots ,{{\text{i}}_{\text{n}}}\sqrt {{{\text{x}}_{\text{n}}}} } \right)$.
举例如下
求$1 + \sqrt {\text{x}}  + \sqrt {\text{y}}  +2 \sqrt {{\text{xy}}} $的有理化因式
按照程序化作法:
将$1 + \sqrt {\text{y}}  + \sqrt {\text{x}} \left( {1 + 2\sqrt y } \right)$乘以$1 + \sqrt {\text{y}}  - \sqrt {\text{x}} \left( {1 + 2\sqrt y } \right)$得$1 - x + y - 4xy + 2\sqrt {\text{y}} \left( {1 - 2x} \right)$
乘以$1 - x + y - 4xy - 2\sqrt {\text{y}} \left( {1 - 2x} \right)$得${\left( {1 - {\text{x}} + {\text{y}} - 4{\text{xy}}} \right)^2} - 4{\text{y}}{\left( {1 - 2{\text{x}}} \right)^2}$是有理式,所以有理化因式为$\left( {1 + \sqrt {\text{y}}  - \sqrt {\text{x}} \left( {1 + 2\sqrt y } \right)} \right)\left( {1 - {\text{x}} + {\text{y}} - 4{\text{xy}} - 2\sqrt {\text{y}} \left( {1 - 2x} \right)} \right)$
但是按照定理可直接写出:有理化为$\left(2 \sqrt{x y}+\sqrt{x}+\sqrt{y}+1\right) \left(-2 \sqrt{x y}-\sqrt{x}+\sqrt{y}+1\right) \left(-2 \sqrt{x y}+\sqrt{x}-\sqrt{y}+1\right) \left(2 \sqrt{x y}-\sqrt{x}-\sqrt{y}+1\right)$
有理化因式为$\left(-2 \sqrt{x y}-\sqrt{x}+\sqrt{y}+1\right) \left(-2 \sqrt{x y}+\sqrt{x}-\sqrt{y}+1\right) \left(2 \sqrt{x y}-\sqrt{x}-\sqrt{y}+1\right)$
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

我已经会证明了那个式子是多项式,请问那个式子是最低次数的有理化吗

TOP

有点像Swinnerton-Dyer Polynomial.
参看:https://bbs.emath.ac.cn/forum.ph ... amp;page=2#pid54091
以及《代數數與無理數的探討》
https://w3.math.sinica.edu.tw/math_media/d272/27204.pdf

TOP

返回列表 回复 发帖