免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[函数] 已知函数有3个零点求参数的取值范围

已知零点数求参数范围.jpg
2018-12-7 12:12


这道题,按照分离常数或者化成曲线和直线相交的两种方式,都没有求出来。
请大师们指教!
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

如果只是猜的话,答案应该是A。可是学生门希望能推算出来。

TOP

找到一种方法,不知对不对。求直线与曲线的切点(x,y)。

已知零点数求参数范围2.png
2018-12-7 12:31


还是要结合图形,才能得出答案。

有其他的方法吗?

TOP

分参 + 拉格朗 + 极限,自然且无技巧:

令 `g(x)=xe^{-x}`,则 `f(x)=g(x)-g(2)-a(x-2)`,所以 `x=2` 必为 `f(x)` 的零点,当 `x\ne2` 时,设\[k(x)=\frac{g(x)-g(2)}{x-2},\]即需要 `k(x)=a` 有两解。

先考查 `k(x)` 的增减,求导并利用拉格朗日中值定理得
\begin{align*}
k'(x)&=\frac{(x-2)g'(x)-\bigl(g(x)-g(2)\bigr)}{(x-2)^2}\\
&=\frac1{x-2}\left(g'(x)-\frac{g(x)-g(2)}{x-2}\right)\\
&=\frac1{x-2}\bigl(g'(x)-g'(\xi_1)\bigr)\\
&=\frac{x-\xi_1}{x-2}g''(\xi_2),
\end{align*}
其中,当 `x<2` 时 `x<\xi_2<\xi_1<2`,当 `x>2` 时 `2<\xi_1<\xi_2<x`,而经计算知 `g''(x)=(x-2)e^{-x}`,所以当 `x<2` 时 `k'(x)<0`,当 `x>2` 时 `k'(x)>0`。

再考查 `k(x)` 在这两个区间内的值域,由于单调,只需求端点处的极限,显然有
\begin{align*}
\lim_{x\to2}k(x)&=g'(2)=-e^{-2},\\
\lim_{x\to-\infty}k(x)&=\lim_{x\to-\infty}\frac{e^{-x}-g(2)/x}{1-2/x}=+\infty,\\
\lim_{x\to+\infty}k(x)&=\lim_{x\to+\infty}\frac{e^{-x}-g(2)/x}{1-2/x}=0.
\end{align*}

综上,即:`k(x)` 在 `(-\infty,2)` 内递减且值域为 `(-e^{-2},+\infty)`,在 `(2,+\infty)` 内递增且值域为 `(-e^{-2},0)`,所以 `k(x)=a` 有两解等价于 `a\in(-e^{-2},0)`。
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

回复 4# kuing
3#可以很简单的。用4#分离法,得到那个式子表示$(x,x/e^x)与(2,2/e^2)$连线的斜率范围,且直线与曲线有两个交点(除x=2).也简单。这个题设置的答案太显然,可以很快搞定。

TOP

谢谢两位大神。

TOP

返回列表 回复 发帖