免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

一个三角函数有理分式的定积分

本帖最后由 青青子衿 于 2018-11-24 21:12 编辑

\[ f(x)=\int_0^x\frac{\sin t}{3+2\sin t}{\rm\,d}t \]
\[ I(x)=\int\frac{\sin t}{3+2\sin t}{\rm\,d}t \]
\begin{align*}
I(x)&=\tilde{I}(x)+C\\
&=\frac{x}{2}-\frac{3}{\sqrt{5}}\arctan\left(\frac{2+3\tan\frac{x}{2}}{\sqrt{5}}\right)+C\\
\end{align*}
\begin{align*}
f(x)&=\tilde{I}(x)+R(x)\\
&=\frac{x}{2}-\frac{3}{\sqrt{5}}\arctan\left(\frac{2+3\tan\frac{x}{2}}{\sqrt{5}}\right)-\frac{3}{\sqrt{5}}\left(\pi\operatorname{floor}\left(\frac{x}{2\pi}+\frac{1}{2}\right)-\arctan\frac{2}{\sqrt{5}}\right)\\
&=\frac{x}{2}-\frac{3}{\sqrt{5}}\arctan\left(\frac{2+3\tan\frac{x}{2}}{\sqrt{5}}\right)-\frac{3}{\sqrt{5}}\left(\pi\left\lfloor\frac{x}{2\pi}+\frac{1}{2}\right\rfloor-\arctan\frac{2}{\sqrt{5}}\right)
\end{align*}

\begin{align*}
A\cos x+B\sin x
&=\operatorname{sign}\left(A\right)\sqrt{A^2+B^2}\cos\left(x-\arctan\frac{B}{A}\right)\\
&=\operatorname{sign}\left(B\right)\sqrt{A^2+B^2}\sin\left(x+\arctan\frac{A}{B}\right)
\end{align*}

[url=forum.php?mod=redirect&goto=findpost&pid=50888&ptid=5176]wayne 发表于 2013-10-27 21:30[/url]
不过呢,我相信 [TeX]1/{(1+y'^2)^{5/2}} [/TeX]这个积分因子是可以通过将原方程摊开,添加一个 因子,配成一个全微分 而得到。 ...
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

返回列表 回复 发帖