免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[不等式] 一道$abc=1$的不等式

正数a,b,c满足$abc=1$,求证$\frac{1}{a^3\sqrt{b^2+c^2}}+\frac{1}{b^3\sqrt{c^2+a^2}}+\frac{1}{c^3\sqrt{a^2+b^2}}\geq\frac{3\sqrt{2}}{2}$

我把它变成了$\sum\frac{\frac{1}{a^2}}{\sqrt{\frac{1}{b^2}+\frac{1}{c^2}}}$然后想用柯西不等式,但是次数感觉调不平啊。
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

令 `a=\sqrt{xy}/z`, `b=\sqrt{yz}/x`, `c=\sqrt{zx}/y`, `x`, `y`, `z>0`,则
\[\sum\frac1{a^3\sqrt{b^2+c^2}}=\sum\frac{(z^2)^{3/2}}{\sqrt{xyz(x^3+y^3)}}\geqslant \frac{(x^2+y^2+z^2)^{3/2}}{\sqrt{2xyz(x^3+y^3+z^3)}},\]
故只需证
\[(x^2+y^2+z^2)^3\geqslant9xyz(x^3+y^3+z^3),\]

\[(x^2+y^2+z^2)^3\geqslant9xyz(x+y+z)(x^2+y^2+z^2-xy-yz-zx)+27(xyz)^2,\]
因为 `3xyz(x+y+z)\leqslant(xy+yz+zx)^2`,所以只需证
\[(x^2+y^2+z^2)^3\geqslant3(xy+yz+zx)^2(x^2+y^2+z^2-xy-yz-zx)+\frac{3(xy+yz+zx)^4}{(x+y+z)^2},\]
记 `p=x^2+y^2+z^2`, `q=xy+yz+zx`,上式即
\[p^3\geqslant3q^2(p-q)+\frac{3q^4}{p+2q},\]
作差分解为
\[\frac{(p-q)(p^3+3p^2q-3q^3)}{p+2q}\geqslant0,\]
显然成立,即得证。

TOP

返回列表 回复 发帖