免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

一道找规律求点坐标的题

本帖最后由 isee 于 2018-3-14 19:49 编辑

如图,个人认为点$P_i,i=1,2,3,\cdots$是按顺时针按下去的。
snap.png
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

本帖最后由 isee 于 2018-3-14 21:37 编辑

回复 1# isee

用复数与向量求了个结果,不知道是否计算正确了,哈哈

$$P_n\left( \frac{2^n - \cos \frac{n\pi}3 - \frac{\sqrt 3}3\sin \frac{n\pi}3}{2^{n - 1}},\frac{\sqrt 3}3 \cdot \frac{2^n - \cos \frac{n\pi}3+ \sqrt 3 \sin \frac{n\pi}3}{2^{n - 1}} \right).$$

TOP

用复数乘法来玩这题确实不错,楼主不愿写过程,俺来写


\[w=\frac 12(\cos 60\du-i\sin 60\du),\]
将 $\vv{AB}$ 所对应的复数记为 $z(AB)$,将原点记为 $P_0$,则易知
\[z(P_0P_1)=w^{-1},\]
根据三角形的画法可知
\[z(P_kP_{k+1})=z(P_{k-1}P_k)\cdot w, \quad k=1,2,\ldots,\]
所以
\begin{align*}
z(P_0P_n)&=z(P_0P_1)+z(P_1P_2)+\cdots +z(P_{n-1}P_n)\\
&=w^{-1}+w^0+w+\cdots +w^{n-2}\\
&=w^{-1}\cdot \frac {1-w^n}{1-w},
\end{align*}
不难计算出
\[\frac {w^{-1}}{1-w}=2+\frac {2i}{\sqrt 3},\]
由什么佛定理有
\[1-w^n=1-\frac 1{2^n}\cos (n\cdot 60\du)+\frac 1{2^n}i\sin (n\cdot 60\du),\]
代入展开后即可得到楼上的结果。
冇钱又冇样、冇型又冇款、冇身材又冇文采、冇学历又冇能力、冇高度冇速度冇力度兼夹冇野做!(粤语)
口号:珍爱生命,远离考试。

TOP

想到了,并执行下去

TOP

返回列表 回复 发帖