免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

摆线演示

  1. R := 4;
  2. Manipulate[
  3. Show[ParametricPlot[{\[Alpha] R + R Cos[-(\[Pi]/2) - \[Alpha]],
  4.      R + R Sin[-(\[Pi]/2) - \[Alpha]]}, {\[Alpha], 0, 4 \[Pi]}] //
  5.    Evaluate,
  6.   Graphics[{Circle[{\[Alpha] R, R}, R], Red, Thick,
  7.     Line[{{\[Alpha] R + R Cos[-(\[Pi]/2) - \[Alpha]],
  8.        R + R Sin[-(\[Pi]/2) - \[Alpha]]}, {\[Alpha] R, R}}],
  9.     PointSize[Large], Pink,
  10.     Point[{\[Alpha] R + R Cos[-(\[Pi]/2) - \[Alpha]],
  11.       R + R Sin[-(\[Pi]/2) - \[Alpha]]}]}]], {\[Alpha], 0, 4 \[Pi]}]
复制代码
a.gif
2017-12-26 14:50

转自:http://www.math.org.cn/forum.php ... 7985&pid=174408
PS、该帖“板凳”的计算方法也是经典。
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
冇钱又冇样、冇型又冇款、冇身材又冇文采、冇学历又冇能力、冇高度冇速度冇力度兼夹冇野做!(粤语)
口号:珍爱生命,远离考试。

的确是厉害。。。。。

TOP

那边将要关闭了,把“板凳”的计算方法也引用过来存个档吧……
月出孤舟寒  发表于 2017-11-18 17:38:37
QQ截图20180113022432.jpg
2018-1-13 02:26

从运动学的角度来做无需写出摆线方程

如图,假设半径为 $R$ 的圆沿直线做无滑滚动,转动角速度为 $\omega $

由于是无滑,所以 $P$ 点速度 $\upsilon \bot PB$ 从而 $\upsilon=\omega\overline{PB} =\omega 2R\sin \frac{\theta}{2}$

从而 $\mathrm{d}s=\upsilon\mathrm{d}t=2\omega R\sin \frac{\theta}{2}\mathrm{d}t=2R\sin \frac{\theta}{2}\mathrm{d}\theta$

所以一轮摆线的长度就是 $\int_0^{2\pi}2R\sin \frac{\theta}{2}\mathrm{d}\theta=8R$
冇钱又冇样、冇型又冇款、冇身材又冇文采、冇学历又冇能力、冇高度冇速度冇力度兼夹冇野做!(粤语)
口号:珍爱生命,远离考试。

TOP

返回列表 回复 发帖