免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[几何] 将正三角形置于平面坐标系内,三边斜率关系

设$k_1,k_2,k_3$分别是一个等边三角形的三条边的斜率,又设它们都是有限的且全为不零,证明:
(1)$k_1k_2+k_2k_3+k_3k_1=-3$;
(2)$(k_1+k_2+k_3)(1/k_1+1/k_2+1/k_3)=9$.
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

直接代入 $k_{2,3}=(k_1\pm\sqrt3)/(1\mp\sqrt3k_1)$ 死算就行了吧……

TOP

化归一元强算,理论可行的,不过,有没有整体运算法?

TOP

尝试寻找三个斜率满足的三次方程。。。。

TOP

回复 4# zhcosin


    啧啧啧,敏锐!

TOP

回复 5# isee

确实敏锐,被他一提示,我也想到了……

因为
\[\frac{k_{2,3}-k_1}{1+k_{2,3}k_1}=\pm\sqrt3,\]
那么 $k_1$, $k_2$, $k_3$ 是如下方程的三个根
\[\left( \left( \frac{x-k_1}{1+xk_1} \right)^2-3 \right)(x-k_1)=0,\]
去分母展开为
\[(1-3k_1^2)x^3+3k_1(k_1^2-3)x^2+3(3k_1^2-1)x+k_1(3-k_1^2)=0,\]
于是
\[k_1k_2+k_2k_3+k_3k_1=\frac{3(3k_1^2-1)}{1-3k_1^2}=-3,\]
以及
\[(k_1+k_2+k_3)\left(\frac1{k_1}+\frac1{k_2}+\frac1{k_3}\right)
=\frac{-3(k_1+k_2+k_3)}{k_1k_2k_3}=\frac{-3\cdot 3k_1(k_1^2-3)}{k_1(3-k_1^2)}=9.\]
1

评分人数

TOP

回复 6# 色k
niubility, 我还在想复数和极坐标呢。。。。。

TOP

未命名.PNG
2017-10-13 09:51
2

评分人数

TOP

8楼的图片,需要转成文字,mark下。

TOP

回复  isee

确实敏锐,被他一提示,我也想到了……

因为
\[\frac{k_{2,3}-k_1}{1+k_{2,3}k_1}=\pm\sqrt3 ...
色k 发表于 2017-10-10 17:49



    这也很棒的过程。。。

TOP

回复 10# isee

那怎么我的没威望呐
这名字我喜欢

TOP

回复 11# 色k


    24小时才能加一个威望,so,再何况,还是个马夹。。。。。

TOP

回复 12# isee

原来如此

TOP

回复 12# isee


   可以加的,没24小时限制

TOP

返回列表 回复 发帖