免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[函数] 求一个函数最值 $(1+\frac1x)^x+(1+x)^{\frac1x}$

QQ图片20170304163443.png
2017-3-4 16:32

答案都知道是4,缺少严格的证明
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

本帖最后由 realnumber 于 2017-3-7 10:51 编辑

$g(x)=g(\frac{1}{x})$,只需要考虑$x\ge1$或$0<x\le 1$
导数好复杂,没找到头绪...
觉得会不会把伯努利不等式推广下?比如展开保留更多的项?x=1要取等,展开的话,也该在x=1处

TOP

QQ截图20170307140655uuu.jpg
2017-3-7 14:07

试着切线法,用了2个数据简单的,都失败了
$g(x)\le  s(x),g(x)\le r(x)$,但放缩过度,x=1处,s(x),r(x)变最小值了

TOP

突然灵感一来想到一个菊部。

令 $f(x)=(1+x)^{1+1/x}$, $x>0$,经过一番计算,可得其二阶导数为
\[f''(x)=(1+x)^{1+1/x}\cdot\frac{(1+x)\ln^2(1+x)-x^2}{x^4},\]
易证对任意 $x>0$ 恒有
\[\ln(1+x)<\frac x{\sqrt{1+x}}\riff f''(x)<0,\]
即 $f(x)$ 为上凸函数,因此它必恒不大于它的任一条切线,经过计算可知 $f(x)$ 在 $x=1$ 处的切线方程为 $y=4(1-\ln 2)(x-1)+4$,因此我们有
\[(1+x)^{1+1/x}\leqslant 4(1-\ln 2)(x-1)+4,\]
两边除以 $1+x$ 整理即得如下菊部不等式
\[(1+x)^{1/x}\leqslant 4(2\ln 2-1)\cdot \frac1{1+x}+4(1-\ln 2),\]
作置换 $x\to1/x$,也有
\[\left( 1+\frac1x \right)^x\leqslant 4(2\ln 2-1)\cdot \frac x{1+x}+4(1-\ln 2),\]
两式相加,即得
\[(1+x)^{1/x}+\left( 1+\frac1x \right)^x\leqslant 4(2\ln 2-1)+8(1-\ln 2)=4.\]
冇钱又冇样、冇型又冇款、冇身材又冇文采、冇学历又冇能力、冇高度冇速度冇力度兼夹冇野做!(粤语)
口号:珍爱生命,远离考试。

TOP

学习了,不愧是大神kuing,可否看下我那个极值点偏移问题,和以往的极值偏移有些不一样,谢谢!

TOP

回复 4# kuing
Orz,太漂亮了!

TOP

4楼第一步有笔误,二阶导数那里第一项的指数里没有 1+ ,即应该改为:
\[f''(x)=(1+x)^{1/x}\cdot\frac{(1+x)\ln^2(1+x)-x^2}{x^4},\]
后面不用改。
(感谢网友 TSC999 的指出)

TOP

回复 7# kuing
治学严谨!

TOP

返回列表 回复 发帖