免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

含参变量的积分

$I\left( y \right) = \int_0^\infty  {{e^{ - {x^2}}}\sin \left( {2yx} \right){\text{d}}x}$

证明:\[I\left( y \right) = \int_0^y {{e^{{t^2} - {y^2}}}{\text{d}}t} \]
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

回复 1# icesheep


Dawson函数啊...
正面不好攻啊,估计要用复变了...
果断绕过去

对第二个式子求导,有
\[I'(y)=\frac{d}{dy}e^{-y^2}\int_0^{y}e^{t^2}dt=-2ye^{-y^2}\int_0^y e^{t^2}dt+1\]
因此$I(y)$其实就是微分方程$f'(y)+2yf(y)=1$在$f(0)=0$情况下的特解,显然是唯一的
那么只要证明第一个式子也满足这个条件就好了
\[I'(y)=\int_0^{\infty}e^{-x^2}2x{\cos}(2xy)dx\]
\[I'(y)+2yI(y)=\int_0^{\infty}2e^{-x^2}[x{\cos}(2xy)+y{\sin}(2xy)]dx=-e^{-x^2}{\cos}(2xy)|_0^{\infty}=1\]
而且显然$I(0)=0$
因此两式相等

TOP

返回列表 回复 发帖