免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[不等式] Prove that $(\ln{\dfrac{1-\sin{xy}}{1+\sin{xy}}})^2 \geqslant \cdots$

Prove that if  $x, y \in (0,\sqrt{\frac{\pi}{2}})$ and  $ x \neq y$, then $(\ln{\dfrac{1-\sin{xy}}{1+\sin{xy}}})^2 \geqslant \ln{\dfrac{1-\sin{x^2}}{1+\sin{x^2}}}\ln{\dfrac{1-\sin{y^2}}{1+\sin{y^2}}}$
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
妙不可言,不明其妙,不着一字,各释其妙!

同求证明手段?

TOP

本帖最后由 realnumber 于 2014-5-12 07:55 编辑

未命名.gsp (4.04 KB) 图象显示并不成立.
误打正着,修改了下图象,确实如楼下kuing说的,反向似乎成立.

TOP

回复 3# realnumber
老外也不可靠呀,

TOP

mathematica 直接画二元函数图象显示不等式反向恒成立
QQ截图20140512014741.gif
2014-5-12 01:48
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

考虑展开式
\[\ln \frac{1+\sin x}{1-\sin x} = 2 x+\frac{x^3}{3}+\frac{x^5}{12}+\cdots\]
假如能够证明后面的项的系数全是正的,这样的话,乘起来再用柯西不等式就得出反向的不等式了。
但是如何证明系数全正?高数不在行,先闪……
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

用积分的柯西似乎可以,希望没弄错。

我们要证的是
\[\left( \ln \frac{1-\sin xy}{1+\sin xy} \right)^2\leqslant \ln \frac{1-\sin x^2}{1+\sin x^2}\ln \frac{1-\sin y^2}{1+\sin y^2},\]
亦即
\[\left( \ln \frac{1+\sin xy}{1-\sin xy} \right)^2\leqslant \ln \frac{1+\sin x^2}{1-\sin x^2}\ln \frac{1+\sin y^2}{1-\sin y^2}, \quad (*)\]
注意到
\[\left( \ln \frac{1+\sin x}{1-\sin x} \right)'=\frac2{\cos x},\]
由 $x$, $y$ 的范围知
\begin{align*}
(*) & \iff\left( \int_0^{xy}{\frac2{\cos t}\rmd t} \right)^2\leqslant \left( \int_0^{x^2}{\frac2{\cos t}\rmd t} \right)\left( \int_0^{y^2}{\frac2{\cos t}\rmd t} \right) \\
& \iff\left( \int_0^{xy}{\frac2{\cos t}\rmd t} \right)^2\leqslant \left( \int_0^{xy}{\frac2{\cos (xt/y)}\cdot \frac xy\rmd t} \right)\left( \int_0^{xy}{\frac2{\cos (yt/x)}\cdot \frac yx\rmd t} \right) \\
& \iff\left( \int_0^{xy}{\frac1{\cos t}dt} \right)^2\leqslant \left( \int_0^{xy}{\frac1{\cos (xt/y)}\rmd t} \right)\left( \int_0^{xy}{\frac1{\cos (yt/x)}\rmd t} \right),
\end{align*}
由柯西不等式有
\[\left( \int_0^{xy}{\frac1{\cos (xt/y)}\rmd t} \right)\left( \int_0^{xy}{\frac1{\cos (yt/x)}\rmd t} \right)\geqslant \left( \int_0^{xy}{\frac1{\sqrt{\cos (xt/y)\cos (yt/x)}}\rmd t} \right)^2,\]
由此可见,只要证明当 $x$, $y\in\bigl(0,\sqrt{\pi/2}\bigr)$, $0<t<xy$ 时恒有
\[\cos \frac{xt}y \cos \frac{yt}x \leqslant \cos^2t, \quad (**)\]

\[h(x)=\ln \cos x, \quad x\in(0,\pi/2),\]
求导得
\begin{align*}
h'(x)&=-\tan x<0, \\
h''(x)&=-\sec ^2x<0,
\end{align*}
由琴生、均值及单调性,即得
\[h\left( \frac{xt}y \right)+h\left( \frac{yt}x \right)\leqslant 2h\left( \frac12\left( \frac xy+\frac yx \right)t \right)\leqslant 2h(t),\]

\[\ln \cos \frac{xt}y+\ln \cos \frac{yt}x\leqslant 2\ln \cos t,\]
亦即式 (**),故式 (*) 获证。
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

楼主哩?
有没有其他证法?

TOP

回复 8# 删广告专用
我在,
但没有其他做法。
k版的证法绝妙呀!看来只有战巡等来打分了!

TOP

返回列表 回复 发帖