免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[数列] 请教一道不等式的证明

本帖最后由 djjtyq 于 2014-4-13 20:14 编辑

已知数列$\{a_n\}$满足$a_1=1$,$a_n+1=\frac{a_n^2}{a_n+1}(n\in \mathbb{N}^+)$.
证明:$\displaystyle\sum_{k=1}^{n}\frac{a_k}{1+a_k}<\frac{7}{8}$.


$a_n=\frac{1}{2^{2^{n-1}}}$,$\frac{a_n}{1+a_n}=(\dfrac{1}{2})^{2^{n-1}}$,

所以$\displaystyle\sum_{k=1}^{n}\frac{a_k}{1+a_k}=\frac{1}{2}+(\frac{1}{2})^2+(\dfrac{1}{2})^{2^{2}}+\cdots +(\dfrac{1}{2})^{2^{n-1}}$,至此该如何放缩?
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

回复 1# djjtyq


挺简单的吧..........
很容易证明$2^{n-1}\ge n$,因此...........

TOP

多保留几项,后面放缩成等比数列,也许有别的办法.
\[n\ge 5,2^{n-1}=2^3\times (1+1)^{n-4}\ge 8(1+n-4)>n+4\]
\[n\ge5 ,2^{2^{n-1}}>2^{n+4}\]
\[左边>\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+\frac{1}{2^8}+\frac{1}{2^9}+\cdots+\frac{1}{2^{n+4}}\]
\[左边>\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+\frac{1}{2^7}-\frac{1}{2^{n+4}}>\frac{7}{8}\]

TOP

<3/4+(1/2)^4+(1/2)^5+(1/2)^6+...

TOP

明白了,按 2 楼、3 楼的思路,
$n\ge 4$ 时,$2^{n-1}=1+C_{n-1}^1+C_{n-1}^2+\cdots+C_{n-1}^{n-1}>n+1$,$n\ge 4$ 时,$(\dfrac{1}{2})^{2^{n-1}}<(\dfrac{1}{2})^{n+1}$,
再从第 4 项开始换为等比数列进行放缩。


______kuing edit in $\mathrm\LaTeX$______

TOP

返回列表 回复 发帖