免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[不等式] 最近最喜欢的一个不等式

证明:对$0<x<1$和所有的正整数$n$,成立不等式
\[ \sum_{k=1}^{n}\left(\frac{1+x+x^2+\cdots+x^{k-1}}{k}\right)^{2}<4\ln 2(1+x^2+x^4+\cdots+x^{2n-2}) \]
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
Let's solution say the method!

你确定不需要高数知识解决?……

PS、为什么那么喜欢呢?有没有什么背景之类的
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

回复 2# kuing


    积分放缩。
Let's solution say the method!

TOP

果然不是初等的哼哼
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

方便的话,贴图片下,看看能学到些什么?

TOP

回复 5# realnumber

楼主何需贴图片,他会打代码
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

回复 1# pxchg1200


    能给个过程吗?

TOP

话说我更想知道的是这个不等式有什么背影……
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

证明
我们知道,对$0<x<1$和正整数$n$,有
\[ \int_{x}^{1}\int_{x}^{1}\frac{1-(st)^n}{1-st}dsdt=\sum_{k=1}^{n}\int_{x}^{1}\int_{x}^{1} (st)^{k-1}dsdt=\sum_{j=1}^{n}\left(\frac{1-x^{j}}{j}\right)^{2} \]
于是,不等式可以变成
\[ \int_{x}^{1}\int_{x}^{1}\frac{1-(st)^n}{1-x^{2n}}\cdot\frac{1}{1-st}dsdt<(4\ln2)\frac{1-x}{1+x} \]
显然又有
\[ \int_{x}^{1}\int_{x}^{1}\frac{1-(st)^n}{1-x^{2n}}\cdot\frac{1}{1-st}dsdt<\int_{x}^{1}\int_{x}^{1}\frac{1}{1-st}dsdt \]
故,只要证明
\[ \int_{x}^{1}\int_{x}^{1}\frac{1}{1-st}dsdt <(4\ln2)\frac{1-x}{1+x} \qquad (0<x<1)\]
\begin{align*}
\int_{x}^{1}\int_{x}^{1}\frac{1}{1-st}dsdt&=\int_{x}^{1}\left(\frac{\ln(1-xt)-\ln(1-t)}{t}\right)dt\\
&=-\int_{x}^{1}\frac{\ln(1-t)}{t}dt+\int_{x^2}^{x}\frac{\ln(1-t)}{t}dt\\
&=-2\int_{x}^{1}\frac{\ln(1-t)}{t}dt+\int_{x^2}^{1}\frac{\ln(1-t)}{t}dt
\end{align*}
对后一个积分作替换$t=y^2$,并注意
\[ \ln(1-y^2)=\ln(1-y)+\ln(1+y) \]
于是,不等式变成
\[ \int_{x}^{1}\frac{\ln(1+t)}{t}dt<(2\ln2)\frac{1-x}{1+x},\qquad (0<x<1) \]
而函数$\displaystyle f(t)=\frac{\ln(1+t)}{t}$是递减函数,故
\[ \int_{x}^{1}\frac{\ln(1+t)}{t}dt<(1-x)\frac{\ln(1+x)}{x}=\frac{1-x}{1+x}\left(1+\frac{1}{x}\right)\ln(1+x)<2\ln2 \frac{1-x}{1+x} \]
Hence we are done!
Let's solution say the method!

TOP

只能lu过潜水……

PS、我将align改成了align*,因为之前有网友说带编号的公式会显示不出来。
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

返回列表 回复 发帖