免費論壇 繁體 | 簡體
Sclub交友聊天~加入聊天室當版主
分享
返回列表 发帖

[函数] 一个与最值相关的计算问题

表示计算很繁。已知直线$y=kx+2$与曲线$y=e^x$交于$A,B$两点,求$\triangle AOB$面积最小时的$k$值。
分享到: QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友

我家停电了,只能手写了下,爪机上又发不了图上来,585帮我发下

TOP

QQ图片20180515140534.jpg
2018-5-15 14:07

TOP

回复 3# Tesla35

谢谢585

TOP

回复 4# 色k
色k神啦!我绕死了。

TOP

回复 5# 力工

手写得比较简略,等来电了再码代码

TOP

回复 4# 色k


你这字是认真的嘛

TOP

来了,码一下。

设 `A`, `B` 的横坐标分别为 `x_1`, `x_2`,则\begin{align*}
kx_1+2&=e^{x_1},\\
kx_2+2&=e^{x_2},
\end{align*}易证\[\S{OAB}=\abs{x_1-x_2},\]设\[f(x)=\frac{e^x-2}x,\]则\[f(x_1)=f(x_2)=k,\]由此易知 $\S{OAB}$ 取最小值时必有\[f'(x_1)=f'(x_2),\]求导有\[f'(x)=\frac{e^x(x-1)+2}{x^2},\]所以\[\frac{(kx_1+2)(x_1-1)+2}{x_1^2}=\frac{(kx_2+2)(x_2-1)+2}{x_2^2},\]化简即\[\frac{2-k}{x_1}=\frac{2-k}{x_2},\]由于 `x_1\ne x_2`,所以如果 $\S{OAB}$ 存在最小值,则只能是 `k=2` 时取得,至于最小值存在性是显然的,所以结果就是 `k=2`。

注1:关于“$\S{OAB}$ 取最小值时必有 `f'(x_1)=f'(x_2)`”这一点可以从几何意义看出来,当然也可以严格地证:
\[\frac{\rmd(x_1-x_2)}{\rmd k}=\frac1{\rmd k/\rmd x_1}-\frac1{\rmd k/\rmd x_2}
=\frac1{f'(x_1)}-\frac1{f'(x_2)}.\]
注2:如果将直线改成 `y=kx+b`,其中 `b` 为大于 `1` 的常数,则结论为:当 `k=b` 时面积最小。
$\href{https://kuingggg.github.io/}{\text{About Me}}$

TOP

增加了两个注

TOP

回复 9# kuing

伏地膜大神,谢谢,有图有解有注释。

TOP

需要好好研究一下此题。

TOP

未命名.PNG
2018-5-16 10:55

TOP

返回列表 回复 发帖