悠闲数学娱乐论坛(第2版)'s Archiver

tommywong 发表于 2018-4-2 15:57

a^2017+a^106≥2017^2017+106^106

[size=5][b]这是台湾网友 [color=Red]YAG[/color] 发表在“陆老师的《数学中国》园地”的一个帖子,

欢迎大家一起来想想如何解答:[/b][/size]

[url]http://www.mathchina.net/dvbbs/dispbbs.asp?boardid=2&Id=11759&page=2[/url]

$\displaystyle a=\frac{2017^{2018}+106^{107}}{2017^{2017}+106^{106}}~~~\text{證明}a^{2017}+a^{106}≥2017^{2017}+106^{106}$

tommywong 发表于 2018-4-6 18:36

$\displaystyle
r = \frac{{{{106}^{106}}}}{{{{2017}^{2017}}}},a = \frac{{{{2017}^{2018}} + {{106}^{107}}}}{{{{2017}^{2017}} + {{106}^{106}}}} = \frac{{2017 + 106 \times \frac{{{{106}^{106}}}}{{{{2017}^{2017}}}}}}{{1 + \frac{{{{106}^{106}}}}{{{{2017}^{2017}}}}}} = \frac{{2017 + 106r}}{{1 + r}}\\
{a^{2017}} + {a^{106}} \ge {2017^{2017}} + {106^{106}} \Leftrightarrow {\left( {\frac{{2017 + 106r}}{{1 + r}}} \right)^{2017}} + {\left( {\frac{{2017 + 106r}}{{1 + r}}} \right)^{106}} \ge {2017^{2017}}\left( {1 + r} \right)\\
\Leftrightarrow {\left( {2017 + 106r} \right)^{2017}} + {\left( {2017 + 106r} \right)^{106}}{\left( {1 + r} \right)^{1911}} \ge {2017^{2017}}{\left( {1 + r} \right)^{2018}}\\
{2017^{2017}}{\left( {1 + r} \right)^{2018}} = {2017^{2017}}\sum\limits_{k = 0}^{2018} {C_{2018}^k{r^k}}  = {2017^{2017}} + \sum\limits_{k = 1}^{2018} {C_{2018}^k{{106}^{106}}{r^{k - 1}}}  = {2017^{2017}} + \sum\limits_{k = 0}^{2017} {C_{2018}^{k + 1}{{106}^{106}}{r^k}} \\
\sum\limits_{k = 0}^{2017} {C_{2017}^k{{2017}^{2017 - k}}{{106}^k}{r^k}}  + {\left( {2017 + 106r} \right)^{106}}{\left( {1 + r} \right)^{1911}} \ge {2017^{2017}} + \sum\limits_{k = 0}^{2017} {C_{2018}^{k + 1}{{106}^{106}}{r^k}} \\
k = 0 ~~~ {2017^{2017}} + {2017^{106}} > {2017^{2017}} + {106^{106}}2018\\
k > 0 ~~~ C_{2017}^k{2017^{2017 - k}}{106^k} > C_{2018}^{k + 1}{106^{106}} \Leftrightarrow {2017^{2017 - k}}{106^k} > \frac{{2018}}{{k + 1}}{106^{106}}
$

tommywong 发表于 2018-4-8 12:46

好不容易让权哥倒悬打飞机,却摔得再起不能

$
\displaystyle
\frac{(2017^{2018}+106^{107})^m}{(2017^{2017}+106^{106})^{m+1}}>\frac{1}{\frac{2017^{2017(m+1)}}{2017^{2018m}}+\frac{106^{106(m+1)}}{106^{107m}}}=\frac{1}{2017^{2017-m}+106^{106-m}}\\
\displaystyle
\frac{(2017^{2018}+106^{107})^{2017}}{(2017^{2017}+106^{106})^{2018}}+\frac{(2017^{2018}+106^{107})^{106}}{(2017^{2017}+106^{106})^{107}}>\frac{1}{1+106^{-1911}}+\frac{1}{1+2017^{1911}}<\frac{1}{1+106^{-1911}}+\frac{1}{1+106^{1911}}=1\\
\displaystyle
\frac{(2017^{2018}+106^{107})^{2017}}{(2017^{2017}+106^{106})^{2018}}+\frac{(2017^{2018}+106^{107})^{106}}{(2017^{2017}+106^{106})^{107}}=\frac{(2017^{2018}+106^{107})^{106}}{(2017^{2017}+106^{106})^{107}}(a^{1911}+1)>\frac{1+a^{1911}}{1+2017^{1911}}<1
$

kuing 发表于 2018-4-8 13:50

下面证明:对于任意 `x`, `y\geqslant1`,恒有
\[\left( \frac{x^{x+1}+y^{y+1}}{x^x+y^y} \right)^x+\left( \frac{x^{x+1}+y^{y+1}}{x^x+y^y} \right)^y\geqslant x^x+y^y.\]

因为
\[\left( \frac{x^{x+1}+y^{y+1}}{x^x+y^y} \right)^x=\left( x-\frac{(x-y)y^y}{x^x+y^y} \right)^x=x^x\left( 1-\frac{(x-y)y^y}{x(x^x+y^y)} \right)^x,\]
故由勃撸力不等式得
\[\left( \frac{x^{x+1}+y^{y+1}}{x^x+y^y} \right)^x\geqslant x^x\left( 1-\frac{(x-y)y^y}{x^x+y^y} \right)=x^x-\frac{(x-y)x^xy^y}{x^x+y^y},\]
同理
\[\left( \frac{x^{x+1}+y^{y+1}}{x^x+y^y} \right)^y\geqslant y^y-\frac{(y-x)x^xy^y}{x^x+y^y},\]
两式相加即得证。

tommywong 发表于 2018-4-8 14:20

[b]果然不等式还是要交给[color=Red]渣k[/color]!我已将帖子转贴到“陆老师的《数学中国》园地”。[/b]

kuing 发表于 2018-4-8 21:27

忘了说一句,当 `x`, `y\in(0,1)` 时反向成立。

页: [1]

Powered by Discuz! Archiver 7.2  © 2001-2009 Comsenz Inc.