悠闲数学娱乐论坛(第2版)'s Archiver

力工 发表于 2018-2-2 16:16

数列不等式

学习学习大师们的高端想法!{:handshake:}
题目如下:已知数列${a_n}$:当$n$为奇数时,$a_{n+1}=\dfrac{a_n^2}{2a_n-2}$;当$n$为偶数时,$a_{n+1}=2a_n-2$,且$a_1=a$.
(1)证明:若$a>1$,则均有$a_n\geqslant 2(n\geqslant 2)$;
(2)证明:若$a=3$,则$4n+1<a_1+a_2+\cdots +a_{2n}<4n+3$.

kuing 发表于 2018-2-2 22:22

第一问略;第二问也简单,过程是很常规的,并不需要高端的东东。

下面加强为证明:
\[4n+1<a_1+a_2+\cdots+a_{2n}<4n+\frac{17}8.\]

令 $b_n=a_n-2$,则 $b_1=1$,且易得
\[b_{n+1}=\led
&\frac{b_n^2}{2b_n+2},&&n~\text{为奇数},\\
&2b_n,&&n~\text{为偶数},
\endled\]
要证的不等式为
\[1<b_1+b_2+\cdots+b_{2n}<\frac{17}8,\]
显然 $b_n$ 恒正,所以左边显然成立,至于右边,根据递推式可知等价于
\[1+3(b_2+b_4+b_6+\cdots+b_{2n})-2b_{2n}<\frac{17}8,\]
因此只需证
\[b_2+b_4+\cdots+b_{2n}<\frac38,\]
易知 $b_2=1/4$,且当 $n$ 为偶数时
\[b_{n+2}=\frac{b_{n+1}^2}{2b_{n+1}+2}=\frac{2b_n^2}{2b_n+1},\]
由此易证
\[b_{n+2}\leqslant\frac{b_n}3,\]
所以
\[b_2+b_4+\cdots+b_{2n}
<\sum_{k=1}^\infty\frac1{4\cdot3^{k-1}}=\frac38,\]
即得证。

力工 发表于 2018-2-3 07:55

[b]回复 [url=http://kuing.orzweb.net/redirect.php?goto=findpost&pid=25171&ptid=5173]2#[/url] [i]kuing[/i] [/b]
谢谢酷神!这个变换妙!

页: [1]

Powered by Discuz! Archiver 7.2  © 2001-2009 Comsenz Inc.