悠闲数学娱乐论坛(第2版)'s Archiver

血狼王 发表于 2017-1-30 10:45

关于Huber估计的一个积分的不等式

证明:
$$\int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \min(x^2,k^2) dx\leq 1-e^{-k^2}.$$

血狼王 发表于 2017-1-30 10:47

这是稳健估计理论中Huber估计的回归因子
若有不懂,请自查文献

战巡 发表于 2017-1-31 09:24

[b]回复 [url=http://kuing.orzweb.net/redirect.php?goto=findpost&pid=20165&ptid=4439]1#[/url] [i]血狼王[/i] [/b]

\[\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\min(x^2,k^2)dx=E(\min(X^2,k^2))\]
其中$X\sim N(0,1)$,若令$Y=X^2\sim \chi^2(1)$,则其也等于
\[E(\min(Y,k^2))\]
令$Z\sim\chi^2(1)$且与$Y$独立,令$W=Y+Z$,则有
\[2E(\min(Y,k^2))=E(\min(Y,k^2))+E(\min(Z,k^2))=E(\min(W,2k^2)|Y>k^2,Z>k^2)\]
\[\le E(\min(W,2k^2)|Y>k^2,Z>k^2)+E(\min(W,2k^2)|Y\le k^2,Z>k^2)+E(\min(W,2k^2)|Y>k^2,Z\le k^2)\]
\[=E(\min(W,2k^2))\]
显然$W=Y+Z\sim\chi^2(2)$,可知
\[E(\min(W,2k^2))=\int_{0}^{2k^2}\frac{e^{-\frac{w}{2}}}{2}wdw+\int_{2k^2}^{+\infty}k^2e^{-\frac{w}{2}}dw=2(1-e^{-k^2})\]
下略...

血狼王 发表于 2017-1-31 15:55

[b]回复 [url=http://kuing.orzweb.net/redirect.php?goto=findpost&pid=20167&ptid=4439]3#[/url] [i]战巡[/i] [/b]


谢谢{:handshake:}

页: [1]

Powered by Discuz! Archiver 7.2  © 2001-2009 Comsenz Inc.