悠闲数学娱乐论坛(第2版)'s Archiver

天音 发表于 2016-10-2 00:15

求内接于抛物线y^2=2px(p>0)的正三角形的中心的轨迹

如题

abababa 发表于 2016-10-2 09:31

[b]回复 [url=http://kuing.orzweb.net/redirect.php?goto=findpost&pid=19130&ptid=4261]1#[/url] [i]天音[/i] [/b]

设三点的坐标分别是$(x_1,y_1),(x_2,y_2)(x_3,y_3)$。中心$(x,y)$一定满足$3x=x_1+x_2+x_3,3y=y_1+y_2+y_3$。
再用斜率,$k_3=\frac{y_2-y_1}{x_2-x_1}=\frac{y_2^2-y_1^2}{(y_1+y_2)(x_2-x_1)}=\frac{2p(x_2-x_1)}{(y_1+y_2)(x_2-x_1)}=\frac{2p}{y_1+y_2}$,同理能得出$k_2=\frac{2p}{y_3+y_1},k_1=\frac{2p}{y_2+y_3}$。然后用夹角公式$\sqrt{3}=\tan\frac{\pi}{3}=\frac{k_2-k_1}{1+k_1k_2}=\frac{2p(y_2-y_1)}{(y_2+y_3)(y_3+y_1)+4p^2}$,同理能得出
\[\frac{2p(y_2-y_1)}{(y_2+y_3)(y_3+y_1)+4p^2}=\frac{2p(y_3-y_2)}{(y_3+y_1)(y_1+y_2)+4p^2}=\frac{2p(y_1-y_3)}{(y_1+y_2)(y_2+y_3)+4p^2}=\sqrt{3}\]
然后用比例性质,把三式的分子分母分别相加,得出
\[\sqrt{3}=\frac{2p(y_2-y_1)+2p(y_3-y_2)+2p(y_1-y_3)}{(y_2+y_3)(y_3+y_1)+(y_3+y_1)(y_1+y_2)+(y_1+y_2)(y_2+y_3)+12p^2}\]
但是这时分子是$0$,把分母乘过去可知分母也是$0$,分母展开就是
\[y_1^2+y_2^2+y_3^2+3(y_1y_2+y_2y_3+y_3y_1)+12p^2=0\]
然后因为$2px_1=y_1^2,2px_2=y_2^2,2px_3=y_3^2$,相加得$2p\cdot3x=y_1^2+y_2^2+y_3^2$,代入上式可得
\[3(y_1y_2+y_2y_3+y_3y_1)+12p^2+6px=0\]
然后是$2(y_1y_2+y_2y_3+y_3y_1)=(y_1+y_2+y_3)^2-(y_1^2+y_2^2+y_3^2)=9y^2-6px$,再代入上式就得到$9y^2-2px+8p^2=0$,就是轨迹了。

天音 发表于 2016-10-3 13:53

好解法!学习了
and,不知换成椭圆或双曲线会怎么样?

lemondian 发表于 2018-2-3 10:13

[quote]好解法!学习了
and,不知换成椭圆或双曲线会怎么样?
[size=2][color=#999999]天音 发表于 2016-10-3 13:53[/color] [url=http://kuing.orzweb.net/redirect.php?goto=findpost&pid=19133&ptid=4261][img]http://kuing.orzweb.net/images/common/back.gif[/img][/url][/size][/quote]
同问:
换成椭圆或双曲线时,结论会怎么样?

页: [1]

Powered by Discuz! Archiver 7.2  © 2001-2009 Comsenz Inc.